scholarly journals Dual gate material (Au and Pt) based double-gate MOSFET for high-speed devices

Author(s):  
Naveenbalaji Gowthaman ◽  
Viranjay M Srivastava

Aluminium Gallium Arsenide (AlGaAs) is a semiconductor material used in the latest design of double heterostructure laser diodes. This semiconductor is mostly available in the arbitrary alloy form between Gallium Arsenide and Aluminium Arsenide. It is derived from the Tri-MethylGallium (TMG/TMGa), and Arsine (AsH3), both the chemicals are pyrophoric and toxic. The resistance is less between source and drain contacts in the case of AlGaAs so that it has been proposed as a material to grow contacts on Indium Phosphide (InP) layer. The AlGaAs uses an ion implantation model for a design purpose which lowers the thermal power while the operation of the device. The parasitic capacitance has to be taken care of while designing a device using this material since the capacitance affects much in the AlGaAs based devices. The average velocity of the electrons has been observed to be increased by 14.63 % in the Au-gate (gate-1) and Pt-gate (gate-2) material-based Double-Gate (DG) MOSFET compared to the Silicon-based DG MOSFET. This paves the way for higher electron mobility, in turn, it can be used in highfrequency device manufacturing. The proposed material can be used in high-speed hybrid applications such as HEMTs and radiofrequency devices for long-haul communication.

This paper explains the detailed structure as well as performance of DG-CNTFET (Double Gate Carbon Nanotube Field Effect Transistor) and its performance is compared with the DG-MOSFET (Double Gate Metal Oxide Semiconductor Field Effect Transistor). Various parameters like I-V characteristics, ON current, OFF current and ON to OFF current ratio have been evaluated using nano-TCAD ViDES. Also, the transport description of DG-MOSFET and DG-CNTFET has been described in detail. It has been observed that DG-CNTFET has lower OFF current and higher ON current in comparison to the DG-MOSFET. The higher ON current of DG-CNTFET depicts that it requires less time to turn on the device in comparison with DG-MOSFET. Also, OFF current of the DG-CNTFET is lesser as compared to MOSFET. The DG-CNTFET’s higher ON to OFF current ratio outperforms the DG-MOSFET in term of switching speed of the device. It is proposed that CNTFET can be used as an alternative of MOSFETs for high speed Integrated Circuit (IC) design.


2017 ◽  
Vol 2 (2) ◽  
pp. 15-19 ◽  
Author(s):  
Md. Saud Al Faisal ◽  
Md. Rokib Hasan ◽  
Marwan Hossain ◽  
Mohammad Saiful Islam

GaN-based double gate metal-oxide semiconductor field-effect transistors (DG-MOSFETs) in sub-10 nm regime have been designed for the next generation logic applications. To rigorously evaluate the device performance, non-equilibrium Green’s function formalism are performed using SILVACO ATLAS. The device is turn on at gate voltage, VGS =1 V while it is going to off at VGS = 0 V. The ON-state and OFF-state drain currents are found as 12 mA/μm and ~10-8 A/μm, respectively at the drain voltage, VDS = 0.75 V. The sub-threshold slope (SS) and drain induced barrier lowering (DIBL) are ~69 mV/decade and ~43 mV/V, which are very compatible with the CMOS technology. To improve the figure of merits of the proposed device, source to gate (S-G) and gate to drain (G-D) distances are varied which is mentioned as underlap. The lengths are maintained equal for both sides of the gate. The SS and DIBL are decreased with increasing the underlap length (LUN). Though the source to drain resistance is increased for enhancing the channel length, the underlap architectures exhibit better performance due to reduced capacitive coupling between the contacts (S-G and G-D) which minimize the short channel effects. Therefore, the proposed GaN-based DG-MOSFETs as one of the excellent promising candidates to substitute currently used MOSFETs for future high speed applications.


1971 ◽  
Vol 7 (22) ◽  
pp. 661 ◽  
Author(s):  
J.A. Turner ◽  
A.J. Waller ◽  
E. Kelly ◽  
D. Parker

2008 ◽  
Author(s):  
Haisheng Rong ◽  
Simon Ayotte ◽  
Shengbo Xu ◽  
Oded Cohen ◽  
Mario Paniccia

Sign in / Sign up

Export Citation Format

Share Document