scholarly journals 3D Geological Modeling in Mineral Deposits (Copper Ore Body Cases)

2018 ◽  
Vol 14 (15) ◽  
pp. 1
Author(s):  
Sirelda Bele

Munella's deposit is one of the most important mineral deposits of Albania. It is rich in mineral resources such as copper, zinc, gold, etc. For this reason Geological 3D modeling is very important because it gives detailed information on management in the most optimal way to mine. In this article, 3D modeling of copper bodies was carried out through modeling software using the implicit method. This method uses advanced algorithms that are Polyharmonic Radial Basis Functions (RBF) generates the best surface area of the ore that can have some Z values and can perfectly customize the incomplete surfaces by utilizing 211 drilling data. The ore bodies that are created with this method are divided into blocks that represent the distribution of copper in%. The results achieved in this study provide an accurate overview of the most important sources of deposits and major concentrations of copper for the efficient management and exploitation of the mine.

Author(s):  
M. Nurpeissova ◽  
◽  
M. Zh. Bitimbayev ◽  
К. В. Rysbekov ◽  
K. Derbisov ◽  
...  

. Information about copper deposits of Kazakhstan, development of which is carried out in the Saryarka region and its role in the development of the mining industry are considered in the article. Geological, structural and tectonic features of the deposits are presented. Research results on improvement methods of studying and geomechanical processes management in the development of mineral resources are presented. It is shown that the problem of geomechanical processes management can be solved on the basis of methodology for rock condition geomonitoring considered in this article, which provides comprehensive accounting and analysis of all natural and technogenic factors, as well as use of control tools developed by the authors. The article presents technical solutions to ensure operational safety during the development of Saryarka region field reserves, which occur in difficult mining and geological conditions. Ore bodies of the deposit have different sizes and are located at different depths, therefore, seismic surveys are carried out. The geodetic network of provisional seismic surveys at the field has been substantiated. It is proposed to conduct surveys using modern geodetic instruments, such as satellite technologies, electronic, digital geodetic instruments. The geodetic survey methods proposed by the authors provide information on the bowels of the earth with a high degree of accuracy.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1383
Author(s):  
Hanliang Liu ◽  
Bimin Zhang ◽  
Xueqiu Wang ◽  
Zhixuan Han ◽  
Baoyun Zhang ◽  
...  

In recent years, mineral resources near the surface are becoming scarce, causing focused mineral exploration on concealed deposits in covered terrains. In northern China, covered terrains are widespread and conceal bedrock sequences and mineralization. These represent geochemical challenges for mineral exploration in China. As a deep-penetrating geochemical technology that can reflect the information of deep anomalies, the fine-grained soil prospecting method has achieved ideal test results in arid Gobi Desert covered terrain, semi-arid grassland covered terrain, and alluvium soil covered terrain of northern China. The anomaly range indicated by the fine-grained soil prospecting method is very good with the known ore body location. The corresponding relationship can effectively indicate deep ore bodies and delineate anomalies in unknown areas. Overall, the fine-grained soil prospecting method can be applied to geochemical prospecting and exploration in covered terrains.


A major geological problem in the Mount Isa District is the significance of the flat greenstone contact which underlies the copper ore bodies at the Isa Mine. Recent structural studies have shown this surface to be one of a set of curved normal faults which flatten in depth and are termed spoon faults. Displacement on the spoon faults ranges upward of 2 km and total extension for the spoon fault domain exceeds 80 km. The domain is bounded by tear faults of which the M ount Isa fault is an example. Reconstruction of the spoon fault domain gives insight to the sedimentary basin which originally included the Mount Isa ore bodies. The reconstruction indicates Isa and Hilton to be two faulted parts of the same ore basin and probably of the same ore body. It also strongly suggests a central concealed part to occur between Isa and Hilton. The extreme extension of the spoon fault domain coupled with the thick basic volcanic section suggests that the domain represents an ancient zone of crustal tension initiated by shear along a curved cratonic boundary.


Ebonyi State is underlain at depth by the Precambrian Basement Complex and by Cretaceous sedimentary units which include the Abakaliki Formation, Nkalagu Limestone, Amasiri Sandstone and Afikpo Sandstone and spans through Southern Benue Trough and Anambra Basin. Shales, sandstones, siltstones and limestones which range from shallow to deep marine depositional environments have intermediate to basic intrusive dolerites, extrusives and pyroclastics rocks emplaced in them. The sediments are dominated by physical structures such as faults, folds, fractures, joints, cross beds, mud cracks and an unconformity; chemical structures such as concretions and solution cavity; and biogenic structures such as burrows and bioturbation. The presence of benthic foraminifera such as Bolivina anambra and Haplopragmoides sp. suggest an upper bethyal deep to shallow marine environment for the sediments. Natural resources and mineral deposits such as lead, zinc, granite, limestone, dolerite, pyroclastics, salt-lake/brine, sand, laterites, clay, kaolin, iron ores, chalcopyrite, illmenite, fluorite, marble stone, quartz and copper ore which spread across the area, contribute largely to the gross domestic products of the state. Data gathered shows that 26% of the mineral deposits are partially exploited, 30 % are locally exploited, 4 % are highly exploited, while 39 % are dormant. Unfortunately, the reserve estimate of these mineral deposits are yet to be documented. Keywords: Anambra Basin, Ebonyi State, Mineral deposits, Southern Benue Trough, Structure; Uncomformity


Author(s):  
G.G. Tkachenko

Морское побережье является одной из самых выраженных естественных географических границ, которая одновременно разделяет и связывает географические структуры суши морей или океанов. В основе формирования типов природопользования в прибрежных зонах, как и на других типах географического пространства, лежит природноресурсный потенциал. Природноресурсный потенциал и типы природопользования как явления пространственнодифференцированные должны быть рассмотрены, прежде всего, в рамках классических географических подходов и оценок, таких как районирование территории и акватории. При этом пространственные сочетания наземных и морских природных, природноресурсных компонентов рассматриваются как важнейшие предпосылки инфраструктурного и хозяйственного развития прибрежных регионов. Необходимым этапом природноресурсного районирования является выявление границ, при пересечении которых существенно меняются природные ресурсы и условия. Данная работа выполнена на примере рассмотрения минеральных ресурсов прибрежных муниципальных образований и является частью исследования природноресурсных сочетаний зоны сушаокеан Дальнего Востока России в рамках изучения пространственной дифференциации факторов, условий и ограничений формирования и развития структур природопользования в прибрежной зоне Тихоокеанской России с учетом воздействия экстремальных природных процессов и явлений. Дана сравнительная характеристика месторождений минерального сырья российской части побережья Японского моря. Определена их видовая и географическая структура. На основе того, что месторождения минерального сырья сгруппированы в 8 основных ресурсных групп ввыполнено районирование российской части побережья Японского моря по сочетанию основных видов минеральных ресурсов. Выделены типы муниципальных образований по сочетанию минеральных ресурсов и показаны особенности каждого из них. Выделены шесть районов по сочетанию минеральных ресурсов. В связи с необходимостью учета географической особенности в сочетании со спецификой минеральных ресурсов, северной и южной частям территории одного типа районов присвоены свои собственные названия. По результатам исследования была построена карта. The seacoast is one of the most pronounced natural geographical boundaries, which divides and connects simultaneously the geographical structures of the land, seas or oceans. The formation of the types of nature management in coastal zones, as well as on other types of geographical space, is based on the natural resource potential. Being spatially differentiated phenomena, the natural resource potential and the types of environmental management should be considered, first of all, within the framework of classical geographical approaches and assessments, such as zoning of the territory and water areas. In this case, spatial combinations of the land and sea natural, naturalresource components are considered as the most important prerequisites for the infrastructure and economic development of coastal regions. Identification of borders, at the intersection of which the natural resources and conditions change significantly, is a necessary stage of natural resource zoning. This work is carried out by example of consideration of mineral resources of coastal municipal unions and appears to be a part of studies of naturalresource combinations of the landocean zone of the Russian Far East in the framework of studies of spatial differentiation of factors, conditions and restrictions of formation and development of structures of nature management in the coastal zone of Pacific Russia, taking into account the influence of extreme natural processes and phenomena. The comparative characteristic of mineral deposits of the Russian part of the coast of the Sea of Japan is given. Their species and a geographical structure are determined. Based on the fact that the mineral deposits are grouped into eight main resource groups, zoning of the Russian part of the coast of the Sea of Japan by a combination of the main types of mineral resources is performed. The types of municipalities are allocated by a combination of mineral resources and their features are shown. Six areas are singled out by a combination of mineral resources. Due to the need to take into account the geographical features in combination with the specifics of mineral resources, the northern and southern parts of the territory of one type of areas have obtained their own names. According to the results of the studies, the map has been compiled.


2021 ◽  
Author(s):  
Barbara Namysłowska-Wilczyńska

<p>This geostatistical study investigates the variation in the basic geological parameters of the lithologically varied deposit in mining block R-1 in the west (W) part of the Rudna Mine (the region Lubin – Sieroszowice, SW part of Poland).</p><p>Data obtained from the sampling (sample size N = 708) of excavations in block R-1 were the input for the spatial analyses. The data are the results of chemical analyses of the Cu content in the (recoverable) deposit series, carried out on channel samples and drilled core samples, taken systematically at every 15-20 m in the headings.</p><p>The deposit profile comprises various rock formations, such as: mineralized Weissliegend sandstones, intensively mineralized upper Permian dolomitic-loamy and loamy copper-bearing schists and carbonate rocks: loamy dolomite, striped dolomite and limy dolomite, of various thickness. No schists formed in some parts of block R-1, which are referred to as the schistless area. The deposit series here is considerably less mineralized (comparing with other mining blocks) even though the mineralization thickness of the sandstone and carbonate rocks reaches as much as 20 m.</p><p>The variation in the Cu content and thickness of the recoverable deposit and the estimated averages Z* of the above parameters were modelled using the variogram function and the ordinary (block) kriging technique. The efficiency of the estimations was characterized.</p><p>As part of the further spatial analyses the Z<sub>s</sub> values of the analysed deposit parameters were simulated using the conditional turning bands simulation. Confidence intervals for the values of averages based on the estimated averages Z* and averages <strong> </strong>based on the simulated values (realizations) Z<sub>s</sub>, showing the uncertainty of the estimations and simulations, were calculated.</p><p>The results of the analyses clearly indicate the shifting of the mineralized zone (the mineralizing solutions), sometimes into the sandstones while spreading throughout the floor of calcareous-dolomitic formations and sometimes into the carbonate rocks, partly entering the roof layers of sandstones. It can be concluded that the process of deposit formation and copper mineralization variation had a multiphase character and the lateral and vertical relocation of the valuable metal ores could play a significant role.</p><p>The combination of various geostatistical techniques - estimation and simulation - will allow for more effective management of natural resources of mineral resources, including copper ore deposits.</p>


2014 ◽  
Vol 2 ◽  
pp. 24-35
Author(s):  
Kabiraj Paudyal

A detailed geological investigation was carried out to assess the distribution of minerals and their geological control in Bandipur-Gondrang area of Tanahu district, a part of Lesser Himalaya in central Nepal. The area is found rich in both metallic and non-metallic mineral deposits. The main metallic minerals found are iron in Phalamdada and Labdi Khola, copper in Bhut Khola and poly-metallic deposits including suspected gold in Bhangeri Khola and Jaubari Khola-Bar Khola sections. A large deposit of inorganic carbon is found around the Gondrang-Watak area. Similarly, a good quality of green marble (metabasite) is found as decorative stone in Bagar Khola area and good quality of roofing stone in Bandipur area. In addition to these economic deposits other several sub economic to non-economic mineral are also located in the geological map of the area. Categorization of these mineral deposits is based on the probable reserve and laboratory analysis of related samples. Geological control of mineral deposits is considered to be the stratigraphic, structural, metamorphic and hydrothermal. Iron mineralization of the area is found stratigraphical control, copper deposits by magmatism of basic rocks (amphibolites), and poly-metallic deposits are related to the hydrothermal processes.


2021 ◽  
Vol 13 (2) ◽  
pp. 224-237
Author(s):  
Valentin CHANTURIA ◽  
◽  
Irina SHADRUNOVA ◽  
Olga GORLOVA ◽  
◽  
...  

Innovative processes of deep and complex processing of technogenic raw materials in the context of sustainable development of the mining industry and the economic challenges facing the mining industry should ensure the transition to a circular economy and the maximum use of natural resources. The article reflects the priority scientific and technological research on the involvement of technogenic mineral resources in efficient processing. Presented, developed at ICEMR RAS, including jointly with universities, research and production organizations and enterprises, modern innovative processes of deep and environmentally friendly processing of refractory mineral raw materials of complex material composition (tailings of enrichment of non-ferrous and noble metal ores, poor off-balance ores, slags ferrous and nonferrous metallurgy, sludge of metallurgical production) and hydro-mineral technogenic resources (acidic mineralized bottom-dump waters of mining enterprises of the copper-zinc complex of the Urals, saponite-containing circulating waters of diamond processing factories). Among other things, new directions in the field of selective disintegration of finely dispersed mineral raw materials based on energy effects and deep processing of slags are outlined; increasing the selectivity of enrichment processes; combined processing of technogenic raw materials; resource-saving processing of technogenic and hydro-mineral resources, obtaining secondary products from processing waste. It is shown that in the face of new economic challenges, Russia has sufficient scientific and technological potential in the field of deep and environmentally safe processing of technogenic raw materials in the form of developed and, to varying degrees, tested innovative resource-saving technologies that correspond to the world level, and in a number of technologies are superior to it.


Sign in / Sign up

Export Citation Format

Share Document