scholarly journals Valuation of the Durability of the Concrete Used in the Precast Great Soviet Panel System

2020 ◽  
Vol 29 (54) ◽  
pp. e10486
Author(s):  
Yamila Concepción Socarrás-Cordoví ◽  
Liliana González-Díaz ◽  
Eduardo Álvarez-Deulofeu ◽  
Mayra González-Fernández ◽  
Estrella Roca-Fernández ◽  
...  

The durability of the concrete of the precast Great Soviet Panel system is valued through the resistance to compression, ultrasonic pulse velocity, surface methods, humidity and potential of corrosion. The evaluation is approached, essentially, through experimental and statistical methods, nevertheless, historical-logical and technical methods, such as surveys and interviews, are used in order to gather a bigger amount of information on the resistance to compression of the elements in the original project. While analyzing the results, we can conclude that, in elements in a good technical-constructive state that conform the constructions in exploitation, concrete has an average resistance. However, in elements with the presence of pathological damages, the resistance is low due to the fact that elements show chemical deterioration processes caused by water exposure, which generates the formation of soluble paste compounds, loss of mass, and decrease in mechanical resistance, among other alterations. At the same time, carbonation of concrete is triggered, which, in turn, causes the corrosion of the reinforcing steel. This corrosion leads to the cracking of concrete, delamination of steel, decrease of the concrete-steel adhesion, and other manifestations that affect the durability of concrete. Therefore, the incidence of the durability of concrete should be valued in the structural seismic behavior of constructions.

2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Sudarmadi Sudarmadi

In this paper a case study about concrete strength assessment of bridge structure experiencing fire is discussed. Assessment methods include activities of visual inspection, concrete testing by Hammer Test, Ultrasonic Pulse Velocity Test, and Core Test. Then, test results are compared with the requirement of RSNI T-12-2004. Test results show that surface concrete at the location of fire deteriorates so that its quality is decreased into the category of Very Poor with ultrasonic pulse velocity ranges between 1,14 – 1,74 km/s. From test results also it can be known that concrete compressive strength of inner part of bridge pier ranges about 267 – 274 kg/cm2 and concrete compressive strength of beam and plate experiencing fire directly is about 173 kg/cm2 and 159 kg/cm2. It can be concluded that surface concrete strength at the location of fire does not meet the requirement of RSNI T-12-2004. So, repair on surface concrete of pier, beam, and plate at the location of fire is required.


2021 ◽  
Vol 11 (9) ◽  
pp. 3747
Author(s):  
Leticia Presa ◽  
Jorge L. Costafreda ◽  
Domingo Alfonso Martín

This work aims to study the relationship between the compression resistance and velocity from ultrasonic pulses in samples of mortars with 25% of pozzolanic content. Pozzolanic cement is a low-priced sustainable material that can reduce costs and CO2 emissions that are produced in the manufacturing of cement from the calcination of calcium carbonate. Using ultrasonic pulse velocity (UPV) to estimate the compressive resistance of mortars with pozzolanic content reduces costs when evaluating the quality of structures built with this material since it is not required to perform an unconfined compression test. The objective of this study is to establish a correlation in order to estimate the compression resistance of this material from its ultrasonic pulse velocity. For this purpose, we studied a total of 16 cement samples, including those with additions of pozzolanic content with different compositions and a sample without any additions. The results obtained show the mentioned correlation, which establishes a basis for research with a higher number of samples to ascertain if it holds true at greater curing ages.


2021 ◽  
Vol 11 (6) ◽  
pp. 2454
Author(s):  
Sofia Real ◽  
José Alexandre Bogas ◽  
Ana Carriço ◽  
Susana Hu

This paper investigates the mechanical and shrinkage behaviour of concrete with recycled cement (RC) thermoactivated from waste cement paste and waste concrete. Overall, compared to ordinary Portland cement (OPC), for the same water/binder ratio, the mechanical strength and ultrasonic pulse velocity were not significantly influenced by the incorporation of RC. The elasticity modulus decreased with the addition of RC and the shrinkage tended to increase at high RC content. The incorporation of up to 15% RC allowed the production of workable concrete with identical shrinkage and similar to higher mechanical strength than concrete with only OPC. RC proved to be a very promising more eco-efficient supplementary cementitious material.


2021 ◽  
Vol 13 (4) ◽  
pp. 1881
Author(s):  
Mei-Yu Xuan ◽  
Yi Han ◽  
Xiao-Yong Wang

This study examines the hydration–mechanical–autogenous shrinkage–durability–sustainability properties of ternary composites with limestone filler (LF) and ground-granulated blast furnace slag (BFS). Four mixtures were prepared with a water/binder ratio of 0.3 and different replacement ratios varying from 0 to 45%. Multiple experimental studies were performed at various ages. The experimental results are summarized as follows: (1) As the replacement levels increased, compressive strength and autogenous shrinkage (AS) decreased, and this relationship was linear. (2) As the replacement levels increased, cumulative hydration heat decreased. At the age of 3 and 7 days, there was a linear relationship between compressive strength and cumulative hydration heat. (3) Out of all mixtures, the ultrasonic pulse velocity (UPV) and electrical resistivity exhibited a rapid increase in the early stages and tended to slow down in the latter stages. There was a crossover of UPV among various specimens. In the later stages, the electrical resistivity of ternary composite specimens was higher than plain specimens. (4) X-ray diffraction (XRD) results showed that LF and BFS have a synergistic effect. (5) With increasing replacement ratios, the CO2 emissions per unit strength reduced, indicating the sustainability of ternary composites.


Sign in / Sign up

Export Citation Format

Share Document