scholarly journals An Overview on Oncolytic Viruses as Cancer Therapy

Author(s):  
Demisse H ◽  
Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 685 ◽  
Author(s):  
Cormac McCarthy ◽  
Nadishka Jayawardena ◽  
Laura N. Burga ◽  
Mihnea Bostina

Oncolytic viruses (OVs) form a group of novel anticancer therapeutic agents which selectively infect and lyse cancer cells. Members of several viral families, including Picornaviridae, have been shown to have anticancer activity. Picornaviruses are small icosahedral non-enveloped, positive-sense, single-stranded RNA viruses infecting a wide range of hosts. They possess several advantages for development for cancer therapy: Their genomes do not integrate into host chromosomes, do not encode oncogenes, and are easily manipulated as cDNA. This review focuses on the picornaviruses investigated for anticancer potential and the mechanisms that underpin this specificity.


Biomedicines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 105 ◽  
Author(s):  
Marta Martinez-Lage ◽  
Pilar Puig-Serra ◽  
Pablo Menendez ◽  
Raul Torres-Ruiz ◽  
Sandra Rodriguez-Perales

Cancer is the second leading cause of death globally and remains a major economic and social burden. Although our understanding of cancer at the molecular level continues to improve, more effort is needed to develop new therapeutic tools and approaches exploiting these advances. Because of its high efficiency and accuracy, the CRISPR-Cas9 genome editing technique has recently emerged as a potentially powerful tool in the arsenal of cancer therapy. Among its many applications, CRISPR-Cas9 has shown an unprecedented clinical potential to discover novel targets for cancer therapy and to dissect chemical-genetic interactions, providing insight into how tumours respond to drug treatment. Moreover, CRISPR-Cas9 can be employed to rapidly engineer immune cells and oncolytic viruses for cancer immunotherapeutic applications. Perhaps more importantly, the ability of CRISPR-Cas9 to accurately edit genes, not only in cell culture models and model organisms but also in humans, allows its use in therapeutic explorations. In this review, we discuss important considerations for the use of CRISPR/Cas9 in therapeutic settings and major challenges that will need to be addressed prior to its clinical translation for a complex and polygenic disease such as cancer.


2019 ◽  
Vol 15 ◽  
pp. 234-247 ◽  
Author(s):  
Meijun Zheng ◽  
Jianhan Huang ◽  
Aiping Tong ◽  
Hui Yang

2009 ◽  
Vol 17 (10) ◽  
pp. 1667-1676 ◽  
Author(s):  
Candice Willmon ◽  
Kevin Harrington ◽  
Timothy Kottke ◽  
Robin Prestwich ◽  
Alan Melcher ◽  
...  

2008 ◽  
Vol 2 ◽  
pp. CMO.S416 ◽  
Author(s):  
Robin J Prestwich ◽  
Fiona Errington ◽  
Kevin J. Harrington ◽  
Hardev S. Pandha ◽  
Peter Selby ◽  
...  

Oncolytic viruses are replication competent, tumor selective and lyse cancer cells. Their potential for anti-cancer therapy is based upon the concept that selective intratumoral replication will produce a potent anti-tumor effect and possibly bystander or remote cell killing, whilst minimizing normal tissue toxicity. Viruses may be naturally oncolytic or be engineered for oncolytic activity, and possess a host of different mechanisms to provide tumor selectivity. Clinical use of live replicating viruses is associated with a unique set of safety issues. Clinical experience has so far provided evidence of limited efficacy and a favourable toxicity profile. The interaction with the host immune system is complex. An anti-viral immune response may limit efficacy by rapidly clearing the virus. However, virally-induced cell lysis releases tumor associated antigens in a ‘dangerous’ context, and limited evidence suggests that this can lead to the generation of a specific anti-tumor immune response. Combination therapy with chemotherapy or radiotherapy represents a promising avenue for ongoing translation of oncolytic viruses into clinical practice. Obstacles to therapy include highly effective non-specific host mechanisms to clear virus following systemic delivery, immune-mediated clearance, and intratumoral barriers limiting virus spread. A number of novel strategies are now under investigation to overcome these barriers. This review provides an overview of the potential role of oncolytic viruses, highlighting recent progress towards developing effective therapy and asks if they are a realistic therapeutic option at this stage.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 400 ◽  
Author(s):  
Hong-My Nguyen ◽  
Kirsten Guz-Montgomery ◽  
Dipongkor Saha

Oncolytic viruses (OVs) are genetically modified or naturally occurring viruses, which preferentially replicate in and kill cancer cells while sparing healthy cells, and induce anti-tumor immunity. OV-induced tumor immunity can be enhanced through viral expression of anti-tumor cytokines such as interleukin 12 (IL-12). IL-12 is a potent anti-cancer agent that promotes T-helper 1 (Th1) differentiation, facilitates T-cell-mediated killing of cancer cells, and inhibits tumor angiogenesis. Despite success in preclinical models, systemic IL-12 therapy is associated with significant toxicity in humans. Therefore, to utilize the therapeutic potential of IL-12 in OV-based cancer therapy, 25 different IL-12 expressing OVs (OV-IL12s) have been genetically engineered for local IL-12 production and tested preclinically in various cancer models. Among OV-IL12s, oncolytic herpes simplex virus encoding IL-12 (OHSV-IL12) is the furthest along in the clinic. IL-12 expression locally in the tumors avoids systemic toxicity while inducing an efficient anti-tumor immunity and synergizes with anti-angiogenic drugs or immunomodulators without compromising safety. Despite the rapidly rising interest, there are no current reviews on OV-IL12s that exploit their potential efficacy and safety to translate into human subjects. In this article, we will discuss safety, tumor-specificity, and anti-tumor immune/anti-angiogenic effects of OHSV-IL12 as mono- and combination-therapies. In addition to OHSV-IL12 viruses, we will also review other IL-12-expressing OVs and their application in cancer therapy.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mengying Xie ◽  
Lei Tao ◽  
Ziqi Zhang ◽  
Wei Wang

: Mesenchymal stem cells (MSCs) possess unique properties that make them potential carriers for cancer therapy. MSCs have been documented to have low immunogenicity, positive safety in clinical trials, and the ability to selectively homing to inflammation and tumor sites. Thisreview aims to introduce tumor tropism mechanism and effects of MSCs on tumor cells, and give an overview of MSCs in delivering gene therapeutic agents, oncolytic viruses and chemotherapeutics, as well as the application of MSCs-derived exosomes in tumor-targeted therapy.


Sign in / Sign up

Export Citation Format

Share Document