scholarly journals Biofilm Production on Different Abiotic Surface, Positive and Negative Charge by Multi-Drug Resistance Corynebacterium striatum Strains

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Cassius Souza
2021 ◽  
Vol 11 (5) ◽  
pp. 958-964
Author(s):  
E. E. David ◽  
M. A. Yameen ◽  
I. Igwenyi ◽  
A. C. Okafor ◽  
U. N. Obeten ◽  
...  

Background. Diarrheagenic E. coli (DEC) is an etiological agent of childhood diarrhea. Resistance against commonly used drugs in the empirical treatment of enteric infections has increased among DEC. Relationship between antibiotic resistance and biofilm formation in microorganisms have been widely reported. This study was aimed to determine the antibiotic resistance and biofilm production pattern among DEC pathotypes isolated from stools of children aged 0–5 years with acute diarrheal disease in Abakaliki, Nigeria. Materials and methods. Diarrheal stool samples were obtained from 60 children and E. coli were isolated and identified using standard guidelines provided for laboratory diagnosis of enteric pathogens. Molecular identification was done by amplification of E. coli universal stress protein A (uspA) using polymerase chain reaction (PCR) method. Detection of virulent genes of DEC pathotypes was performed in a group of multiplex PCR using their specific primers. Kirby–Bauer disk diffusion method was used to determine the antibiotic susceptibility patterns of the isolates while biofilms production was detected by thiazolyl blue tetrazolium bromide dye in a 96-well plate. Results. DEC was isolated in 40 stools among which EIEC [40% (n = 16)] was commonly detected followed by ETEC [30% (n = 12)], EAEC [20% (n = 8)] and typical EPEC [10% (n = 4)]. Half of EAEC showed the highest multidrug resistance against ampicillin, cefoxitin, ciprofloxacin, levofloxacin, and tetracycline with the strongest biofilm production followed by all the EPEC which were resistant to ampicillin, ciprofloxacin, levofloxacin, and tetracycline with moderate biofilm production. All the LT-ETEC exhibited the least resistance to ampicillin and tetracycline with the weakest biofilm production. Conclusion. High frequency of the EIEC pathotype suggests its role as the primary etiological agent of diarrhea in children. Correlation between high drug resistance and biofilm production among the pathotype may indicate that biofilms may provide compatible uptake of resistance genes.


2021 ◽  
Vol 9 (3) ◽  
pp. 515
Author(s):  
Fabrizio Bertelloni ◽  
Giulia Cagnoli ◽  
Valentina Virginia Ebani

Dogs are reservoirs of different Staphylococcus species, but at the same time, they could develop several clinical forms caused by these bacteria. The aim of the present investigation was to characterize 50 clinical Staphylococcus isolates cultured from sick dogs. Bacterial species determination, hemolysins, protease, lipase, gelatinase, slime, and biofilm production, presence of virulence genes (lukS/F-PV, eta, etb, tsst, icaA, and icaD), methicillin resistance, and antimicrobial resistance were investigated. Most isolates (52%) were Staphylococcus pseudointermedius, but 20% and 8% belonged to Staphylococcusxylosus and Staphylococcus chromogenes, respectively. Gelatinase, biofilm, and slime production were very common characters among the investigated strains with 80%, 86%, and 76% positive isolates, respectively. Virulence genes were detected in a very small number of the tested strains. A percentage of 14% of isolates were mecA-positive and phenotypically-resistant to methicillin. Multi-drug resistance was detected in 76% of tested staphylococci; in particular, high levels of resistance were detected for ampicillin, amoxicillin, clindamycin, and erythromycin. In conclusion, although staphylococci are considered to be opportunistic bacteria, the obtained data showed that dogs may be infected by Staphylococcus strains with important virulence characteristics and a high antimicrobial resistance.


2019 ◽  
Author(s):  
Shuli Shao ◽  
Yunjianan Feng ◽  
Yue Xiao ◽  
Yan Li ◽  
Weiwei Zhang ◽  
...  

2016 ◽  
Vol 20 (28) ◽  
pp. 2971-2982
Author(s):  
Cristina Mambet ◽  
Mihaela Chivu-Economescu ◽  
Lilia Matei ◽  
Mihai Stoian ◽  
Coralia Bleotu

Author(s):  
Deepa Parwani ◽  
Sushanta Bhattacharya ◽  
Akash Rathore ◽  
Chaitali Mallick ◽  
Vivek Asati ◽  
...  

: Tuberculosis is a disease caused by Mycobacterium tuberculosis (Mtb), affecting millions of people worldwide. The emergence of drug resistance is a major problem in the successful treatment of tuberculosis. Due to the commencement of MDR-TB (multi-drug resistance) and XDR-TB (extensively drug resistance), there is a crucial need for the development of novel anti-tubercular agents with improved characteristics such as low toxicity, enhanced inhibitory activity and short duration of treatment. In this direction, various heterocyclic compounds have been synthesized and screened against Mycobacterium tuberculosis. Among them, benzimidazole and imidazole containing derivatives found to have potential anti-tubercular activity. The present review focuses on various imidazole and benzimidazole derivatives (from 2015-2019) with their structure activity relationships in the treatment of tuberculosis.


Author(s):  
Katharigatta N. Venugopala ◽  
Christophe Tratrat ◽  
Melendhran Pillay ◽  
Pran Kishore Deb ◽  
Deepak Chopra ◽  
...  

Background: Tuberculosis remains one of the most deadly infectious diseases worldwide due to the emergence of multi-drug resistance (MDR) and extensively drug resistance (XDR) strains of Mycobacterium tuberculosis (MTB). Materials and Methods: Herein, the screening of a total of eight symmetrical 1,4-dihydropyridine (1,4-DHP) derivatives (4a-4h) was carried out for whole-cell anti-TB activity against the susceptible H37Rv and MDR strains of MTB. Results and Discussion: Most of the compounds exhibited moderate to excellent activity against the susceptible H37Rv. Moreover, the most promising compound 4f (against H37Rv) having para-trifluoromethyl phenyl group at 4-position and bis para-methoxy benzyl ester group at 3- and 5-positions of 1,4-dihydropyridine pharmacophore, exhibited no toxicity, but demonstrated weak activity against MTB strains resistant to isoniazid and rifampicin. In light of the inhibitory profile of the title compounds, enoyl-acyl carrier protein reductase (InhA) appeared to be the appropriate molecular target. Docking study of these derivatives against InhA receptor revealed favorable binding interactions. Further, in silico predicted ADME properties of these compounds 4a-4h were found to be in the acceptable ranges including satisfactory Lipinski’s rule of five, thereby indicating their potential as drug-like molecules. Conclusion: In particular, the 1,4-DHP derivative 4f can be considered as an attractive lead molecule for further exploration and development of more potent anti-TB agents as InhA inhibitors.


Sign in / Sign up

Export Citation Format

Share Document