OPTIMASI PANJANG HYDRAULIC FRACTURE PADA RESERVOIR NON-KONVENSIONAL DENGAN METODE UNIFORM CONDUCTIVITY RECTANGULAR FRACTURE

ROTOR ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 6
Author(s):  
Eriska Eklezia D.S. ◽  
Hadziqul Abror

Energy needs in the future will continue to grow along with the growth of the population. Renewable and non-renewable energy sources continue to develop with various innovations. However, energy consumption from non-renewable energy such as coal, oil, and natural gas still dominates. Therefore, one of the potential non-renewable energy sources that can be optimized at present is unconventional oil and gas reserves. Unconventional oil and gas are oil and gas that comes from sourcerock, low permeability reservoirs, such as shale oil, shale gas, tight sand gas, coal bed methane, and methane-hydrate. To produce oil and gas from the tight sand gas reservoir, the hydraulic fracture method is a commonly used method. A hydraulic fracture is a well stimulation technique in which rock is fractured by a pressurized liquid. The process involves the high-pressure injection of fracking fluid into the wellbore to create crack in the deep rock formation through which natural gas, petroleum and brine will flow more freely. When the hydraulic pressure is removed from the well, small grains of hydraulic fracturing proppants hold the fracture open. Well log data such as gamma ray log, SP log, density log, resistivity log and so on will be processed and produce shale volume, porosity, permeability, and water saturation. Procced data from well log will be validated by core data. These data will be input into a reservoir model. A hydraulic fracture design will be made in the reservoir model with a certain length, width, and permeability using the uniform conductivity rectangular fracture method. The simulation will continue by using different length fracture design so that the optimum fracture length value is obtained. Keywords: Hydraulic Fracture, Reservoir Modelling, Reservoir Simulation

Author(s):  
Alexey Dragunov ◽  
Eugene Saltanov ◽  
Igor Pioro ◽  
Pavel Kirillov ◽  
Romney Duffey

It is well known that the electrical-power generation is the key factor for advances in any other industries, agriculture and level of living. In general, electrical energy can be generated by: 1) non-renewable-energy sources such as coal, natural gas, oil, and nuclear; and 2) renewable-energy sources such as hydro, wind, solar, biomass, geothermal and marine. However, the main sources for electrical-energy generation are: 1) thermal - primary coal and secondary natural gas; 2) “large” hydro and 3) nuclear. The rest of the energy sources might have visible impact just in some countries. Modern advanced thermal power plants have reached very high thermal efficiencies (55–62%). In spite of that they are still the largest emitters of carbon dioxide into atmosphere. Due to that, reliable non-fossil-fuel energy generation, such as nuclear power, becomes more and more attractive. However, current Nuclear Power Plants (NPPs) are way behind by thermal efficiency (30–42%) compared to that of advanced thermal power plants. Therefore, it is important to consider various ways to enhance thermal efficiency of NPPs. The paper presents comparison of thermodynamic cycles and layouts of modern NPPs and discusses ways to improve their thermal efficiencies.


2021 ◽  
Vol 11 (11) ◽  
pp. 5142
Author(s):  
Javier Menéndez ◽  
Jorge Loredo

The use of fossil fuels (coal, fuel, and natural gas) to generate electricity has been reduced in the European Union during the last few years, involving a significant decrease in greenhouse gas emissions [...]


2021 ◽  
Vol 144 ◽  
pp. 14-21
Author(s):  
Vladimir P. Polevanov ◽  

The growth in primary energy consumption in 2019 by 1.3% was provided by renewable energy sources and natural gas, which together provided 75% of the increase. China in the period 2010–2020 held a leading position in the growth of demand for energy resources, but according to forecasts, India will join it in the current decade.


2021 ◽  
Vol 3-4 (185-186) ◽  
pp. 109-125
Author(s):  
Myroslav Podolskyy ◽  
Dmytro Bryk ◽  
Lesia Kulchytska-Zhyhailo ◽  
Oleh Gvozdevych

An analysis of Ukraine’s sustainable development targets, in particular in the field of energy, resource management and environmental protection, are presented. It is shown that regional energetic is a determining factor for achieving the aims of sustainable development. Changes in the natural environment in Ukraine due to external (global) and internal (local) factors that are intertwined and overlapped can cause threats to socio-economic development. It is proved that in the areas of mining and industrial activity a multiple increase in emissions of pollutants into the environment are observed. The comparison confirmed the overall compliance of the structure of consumption of primary energy resources (solid fossil fuels, natural gas, nuclear fuel, oil and petroleum products, renewable energy sources) in Ukraine and in the European Union, shows a steaby trend to reduce the share of solid fuels and natural gas and increasing the shares of energy from renewable sources. For example, in Ukraine the shares in the production and cost of electricity in 2018 was: the nuclear power plants – 54.33 % and in the cost – 26.60 %, the thermal power – 35.95 and 59.52 %, the renewable energy sources – 9.6 and 13.88 %. The energy component must be given priority, as it is crucial for achieving of all other goals of sustainable development and harmonization of socio-economic progress. The paper systematizes the indicators of regional energy efficiency and proposes a dynamic model for the transition to sustainable energy development of the region.


2020 ◽  
Author(s):  
Aleksandr Ivakhnenko ◽  
Beibarys Bakytzhan

<p>In global socioeconomic development facing climate change challenges to minimize the output of greenhouse gas (GHG) emissions and moving to a more low-carbon economy (LCE) the major driving force for success in achieving Sustainable Development Goals (SDGs) is the cost of energy generation. One of the main factors for energy source selection in the power supply and energy type generation process is the price parameters often influenced at different degree by government policies incentives, technological and demographic challenges in different countries. We research the energy sources situation and possible development trends for developing country Kazakhstan with resource-based economy. In general, the economic aspects affect the quality and quantity of energy generated from different sources with incentives for environmental concern. Traditional energy sources in Kazakhstan, such as coal, oil and natural gas remain low-cost in production due to high reserve base, which leads to steady growth in this area. In general, the cost for generating 1 kWh of energy from the cheapest carbon source of energy sub-bituminous coal is about 0.0024 $, for natural gas 0.0057 $, conventional oil 0.0152 $ (conventional diesel is 0.0664 $) and for expensive unconventional oil 0.0361 $, whereas renewable hydrocarbons could potentially become more competitive with unconventional oil production (methanol 0.0540 $, biodiesel 0.0837 $, bioethanol 0.1933 $ for generating 1 kWh). Furthermore, we consider the main non-traditional and renewable energy sources of energy from the sun, wind, water, and biofuels, hydrogen, methane, gasoline, uranium, and others. There is a difference between the breakeven prices of conventional gas and biomethane (0.0057 $ and 0.047 - 0.15 $ respectively averaging 0.0675 $ per 1 kWh for biomethane) which is often related to the difference in their production methods. The main advantage of biomethane is environmentally friendly production. We also propose an assessment of fuel by environmental characteristics, where one of the hazardous sources Uranium is forth cheap 0.0069 $ per kWh, but the environmental damage caused by its waste is the greatest. At the same time hydropower is seven times more expensive than uranium, but it does not cause direct health damage issues, however influencing significantly ecosystem balance. Hydrogen fuel is the most expensive among others. Overall in Kazakhstan energy-producing from the sun, wind and biogas is more expensive comparing with global trends from 0.4 to 5.5 cents per 1 kWh, but remains cheaper for hydropower. In addition, based on the research findings we analyzed the potential for sustainable non-renewable and renewable energy development in the future for the case of the resource-based economy in Kazakhstan. </p>


2014 ◽  
Vol 1057 ◽  
pp. 3-10
Author(s):  
Ivan Chmúrny

Analysis of energy consumption during the operation of the renewed elementary school in Lietavská Lúčka, which uses renewable energy sources. The results are based on the consumption of natural gas and electricity according to data from the meters of market suppliers of energy from 2006 to 2013.


2021 ◽  
Vol 2130 (1) ◽  
pp. 012004
Author(s):  
M J Geca

Abstract The paper presents a model of a self-service car wash. Sub-models of water, electricity and natural gas consumption were developed. Heated water is used to wash vehicles and in winter to heat the floor. Electricity is mainly used to power high pressure pumps. The data to develop submodels were based on a time series of 1 year from a 5-station car wash located in central Poland. Chemical consumption and costs were not analyzed in this paper. Generally, this data is quite difficult to access and not provided by car wash manufacturers or owners. The developed model allowed estimating the possibility of using renewable energy sources in the form of solar collectors and photovoltaic panels to balance the energy demand of a car wash depending on the number of washing stands and car wash load. Application of solar collectors allows saving 334 m3 of natural gas per year and 11.2 MWh of electricity in the case of applying photovoltaic panels. The amount of electricity consumed by the carwash is so large that mounting the panels on the whole available area will not provide the required amount anyway. Installation of photovoltaic installation on the premises of touchless car wash is justified in the case of connecting the installation to the public network, which was treated as a battery. The cost of maintaining such a battery is 20% of each stored kWh. As a result of the applied solutions, the CO2 emission will be reduced.


2021 ◽  
Vol 296 ◽  
pp. 01007
Author(s):  
Elena Andreeva ◽  
Alla Golovina ◽  
Victoria Zakharova

The changes in the sphere of the main energy sources in the world and in individual countries were highlighted; the prospects for Russian energy carriers in the global hydrocarbon market were identified. The demand for an energy carrier whose use in Germany is planned to be discontinued (coal) and the demand and competition for natural gas - Russian energy carrier that remains competitive in the conditions of “green” energy were analyzed. The Russian opportunity to save the energy supply market on the background of the new energy order are considered.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ayokunle Adesanya ◽  
Sanjay Misra ◽  
Rytis Maskeliunas ◽  
Robertas Damasevicius

PurposeThe limited supply of fossil fuels, constant rise in the demand of energy and the importance of reducing greenhouse emissions have brought the adoption of renewable energy sources for generation of electrical power. One of these sources that has the potential to supply the world’s energy needs is the ocean. Currently, ocean in West African region is mostly utilized for the extraction of oil and gas from the continental shelf. However, this resource is depleting, and the adaptation of ocean energy could be of major importance. The purpose of this paper is to discuss the possibilities of ocean-based renewable energy (OBRE) and analyze the economic impact of adapting an ocean energy using a thermal gradient (OTEC) approach for energy generation.Design/methodology/approachThe analysis is conducted from the perspective of cost, energy security and environmental protection.FindingsThis study shows that adapting ocean energy in the West Africa region can significantly produce the energy needed to match the rising energy demands for sustainable development of Nigeria. Although the transition toward using OBRE will incur high capital cost at the initial stage, eventually, it will lead to a cost-effective generation, transmission, environmental improvement and stable energy supply to match demand when compared with the conventional mode of generation in West Africa.Practical implicationsThis study will be helpful in determining the feasibility, performance, issues and environmental effects related to the generation and transmission of OBRE in the West Africa region.Originality/valueThe study will contribute toward analysis of the opportunities for adopting renewable energy sources and increasing energy sustainability for the West Africa coast regions.


Sign in / Sign up

Export Citation Format

Share Document