scholarly journals The UNC-83/UNC-84 LINC members are required for body wall muscle nuclei positioning in C. elegans

2018 ◽  
Author(s):  
Andreas Ofenbauer ◽  
Baris Tursun
Keyword(s):  
Development ◽  
1991 ◽  
Vol 111 (3) ◽  
pp. 667-681 ◽  
Author(s):  
P.Y. Goh ◽  
T. Bogaert

As part of a general study of genes specifying a pattern of muscle attachments, we identified and genetically characterised mutants in the mup-1 gene. The body wall muscles of early stage mup-1 embryos have a wild-type myofilament pattern but may extend ectopic processes. Later in embryogenesis, some body wall muscles detach from the hypodermis. Genetic analysis suggests that mup-1 has both a maternal and a zygotic component and is not required for postembryonic muscle growth and attachment. mup-1 mutants are suppressed by mutations in several genes that encode extracellular matrix components. We propose that mup-1 may encode a cell surface/extracellular matrix molecule required both for the positioning of body wall muscle attachments in early embryogenesis and the subsequent maintenance of these attachments to the hypodermis until after cuticle synthesis.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e76877 ◽  
Author(s):  
Ping Liu ◽  
Bojun Chen ◽  
Zeynep F. Altun ◽  
Maegan J. Gross ◽  
Alan Shan ◽  
...  

2021 ◽  
Author(s):  
Patricia G. Izquierdo ◽  
Thibana Thisainathan ◽  
James H. Atkins ◽  
Christian J. Lewis ◽  
John E.H. Tattersall ◽  
...  

AbstractComplex biological functions within organisms are frequently orchestrated by systemic communication between tissues. In the model organism C. elegans, the pharyngeal and body wall neuromuscular junctions are two discrete structures that control feeding and locomotion, respectively. These distinct tissues are controlled by separate, well-defined neural circuits. Nonetheless, the emergent behaviours, feeding and locomotion, are coordinated to guarantee the efficiency of food intake. We show that pharmacological hyperactivation of cholinergic transmission at the body wall muscle reduces the rate of pumping behaviour. This was evidenced by a systematic screening of the cholinesterase inhibitor aldicarb’s effect on the rate of pharyngeal pumping on food in mutant worms. The screening revealed that the key determinant of the inhibitory effect of aldicarb on pharyngeal pumping is the L-type nicotinic acetylcholine receptor expressed in body wall muscle. This idea was reinforced by the observation that selective hyperstimulation of the body wall muscle L-type receptor by the agonist levamisole inhibited pumping. Overall, our results reveal that body wall cholinergic transmission controls locomotion and simultaneously couples a distal inhibition of feeding.


Development ◽  
2002 ◽  
Vol 129 (21) ◽  
pp. 4999-5008 ◽  
Author(s):  
Caroline A. Spike ◽  
Andrew G. Davies ◽  
Jocelyn E. Shaw ◽  
Robert K. Herman

Previous work has shown that C. elegans MEC-8 is a putative RNA-binding protein that promotes specific alternative splices ofunc-52 transcripts. unc-52 encodes homologs of mammalian perlecan that are located extracellularly between muscle and hypodermis and are essential for muscle development in both embryos and larvae. We show that MEC-8 is a nuclear protein found in hypodermis at most stages of development and not in most late embryonic or larval body-wall muscle. We have also found that overexpression of MEC-8 in hypodermis but not muscle can suppress certainunc-52 mutant phenotypes. These are unexpected results because it has been proposed that UNC-52 is produced exclusively by muscle. We have constructed various tissue-specific unc-52 minigenes fused to a gene for green fluorescent protein that have allowed us to monitor tissue-specificmec-8-dependent alternative splicing; we show that mec-8must be expressed in the same cell type as the unc-52 minigene in order to regulate its expression, supporting the view that MEC-8 acts directly on unc-52 transcripts and that UNC-52 must be synthesized primarily by the hypodermis. Indeed, our analysis of unc-52 genetic mosaics has shown that the focus of unc-52 action is not in body-wall muscle but most likely is in hypodermis.


2000 ◽  
Vol 113 (22) ◽  
pp. 4001-4012 ◽  
Author(s):  
F. Liu ◽  
I. Ortiz ◽  
A. Hutagalung ◽  
C.C. Bauer ◽  
R.G. Cook ◽  
...  

Muscle thick filaments are highly organized supramolecular assemblies of myosin and associated proteins with lengths, diameters and flexural rigidities characteristic of their source. The cores of body wall muscle thick filaments of the nematode Caenorhabditis elegans are tubular structures of paramyosin sub-filaments coupled by filagenins and have been proposed to serve as templates for the assembly of native thick filaments. We have characterized alpha- and gamma-filagenins, two novel proteins of the cores with calculated molecular masses of 30,043 and 19,601 and isoelectric points of 10.52 and 11.49, respectively. Western blot and immunoelectron microscopy using affinity-purified antibodies confirmed that the two proteins are core components. Immunoelectron microscopy of the cores revealed that they assemble with different periodicities. Immunofluorescence microscopy showed that alpha-filagenin is localized in the medial regions of the A-bands of body wall muscle cells whereas gamma-filagenin is localized in the flanking regions, and that alpha-filagenin is expressed in 1.5-twofold embryos while gamma-filagenin becomes detectable only in late vermiform embryos. The expression of both proteins continues throughout later stages of development. C. elegans body wall muscle thick filaments of these developmental stages have distinct lengths. Our results suggest that the differential assembly of alpha- and gamma-filagenins into thick filaments of distinct lengths may be developmentally regulated.


2000 ◽  
Vol 113 (22) ◽  
pp. 3947-3958 ◽  
Author(s):  
J.H. Cho ◽  
Y.S. Oh ◽  
K.W. Park ◽  
J. Yu ◽  
K.Y. Choi ◽  
...  

Calsequestrin is the major calcium-binding protein of cardiac and skeletal muscles whose function is to sequester Ca(2+)in the lumen of the sarcoplasmic reticulum (SR). Here we describe the identification and functional characterization of a C. elegans calsequestrin gene (csq-1). CSQ-1 shows moderate similarity (50% similarity, 30% identity) to rabbit skeletal calsequestrin. Unlike mammals, which have two different genes encoding cardiac and fast-twitch skeletal muscle isoforms, csq-1 is the only calsequestrin gene in the C. elegans genome. We show that csq-1 is highly expressed in the body-wall muscles, beginning in mid-embryogenesis and maintained through the adult stage. In body-wall muscle cells, CSQ-1 is localized to sarcoplasmic membranes surrounding sarcomeric structures, in the regions where ryanodine receptors (UNC-68) are located. Mutation in UNC-68 affects CSQ-1 localization, suggesting that the two possibly interact in vivo. Genetic analyses of chromosomal deficiency mutants deleting csq-1 show that CSQ-1 is not essential for initiation of embryonic muscle formation and contraction. Furthermore, double-stranded RNA injection resulted in animals completely lacking CSQ-1 in body-wall muscles with no observable defects in locomotion. These findings suggest that although CSQ-1 is one of the major calcium-binding proteins in the body-wall muscles of C. elegans, it is not essential for body-wall muscle formation and contraction.


1997 ◽  
Vol 137 (5) ◽  
pp. 1171-1183 ◽  
Author(s):  
Patricia L. Graham ◽  
Jeffrey J. Johnson ◽  
Shaoru Wang ◽  
Marion H. Sibley ◽  
Malini C. Gupta ◽  
...  

Type IV collagen in Caenorhabditis elegans is produced by two essential genes, emb-9 and let-2, which encode α1- and α2-like chains, respectively. The distribution of EMB-9 and LET-2 chains has been characterized using chain-specific antisera. The chains colocalize, suggesting that they may function in a single heterotrimeric collagen molecule. Type IV collagen is detected in all basement membranes except those on the pseudocoelomic face of body wall muscle and on the regions of the hypodermis between body wall muscle quadrants, indicating that there are major structural differences between some basement membranes in C. elegans. Using lacZ/green fluorescent protein (GFP) reporter constructs, both type IV collagen genes were shown to be expressed in the same cells, primarily body wall muscles, and some somatic cells of the gonad. Although the pharynx and intestine are covered with basement membranes that contain type IV collagen, these tissues do not express either type IV collagen gene. Using an epitope-tagged emb-9 construct, we show that type IV collagen made in body wall muscle cells can assemble into the pharyngeal, intestinal, and gonadal basement membranes. Additionally, we show that expression of functional type IV collagen only in body wall muscle cells is sufficient for C. elegans to complete development and be partially fertile. Since type IV collagen secreted from muscle cells only assembles into some of the basement membranes that it has access to, there must be a mechanism regulating its assembly. We propose that interaction with a cell surface–associated molecule(s) is required to facilitate type IV collagen assembly.


1996 ◽  
Vol 134 (4) ◽  
pp. 885-893 ◽  
Author(s):  
E B Maryon ◽  
R Coronado ◽  
P Anderson

Striated muscle contraction is elicited by the release of stored calcium ions through ryanodine receptor channels in the sarcoplasmic reticulum. ryr-1 is a C. elegans ryanodine receptor homologue that is expressed in body-wall muscle cells used for locomotion. Using genetic methods, we show that ryr-1 is the previously identified locus unc-68. First, transposon-induced deletions within ryr-1 are alleles of unc-68. Second, transformation of unc-68 mutants with ryr-1 genomic DNA results in rescue of the Unc phenotype. unc-68 mutants move poorly, exhibiting an incomplete flaccid paralysis, yet have normal muscle ultrastructure. The mutants are insensitive to the paralytic effects of ryanodine, and lack detectable ryanodine-binding activity. The Unc-68 phenotype suggests that ryanodine receptors are not essential for excitation-contraction coupling in nematodes, but act to amplify a (calcium) signal that is sufficient for contraction.


Sign in / Sign up

Export Citation Format

Share Document