scholarly journals Stirling engines - the state of technology development and computational models

2021 ◽  
Author(s):  
Mariusz Furmanek ◽  
Jacek Kropiwnicki

Stirling engines represent a technologically important solution in combined heat and power systems. Their use enables the achievement of over 90 percent efficiency in the management of the primary energy source with a very high durability of the device, mainly due to the lack of contact of the working gas with external factors and a very small number of mechanical components. The use of a Stirling engine may be equally important when applying renewable energy sources or waste heat from other processes. The first part of the work presents an overview of available commercial Stirling engine solutions. The second part of the work presents an overview of numerical models of Stirling engine operation, which enable the correct selection of the main geometrical features of the devices and the improvement of the structure in order to maximize efficiency or power.

Author(s):  
Ana C. Ferreira ◽  
Senhorinha Teixeira ◽  
Manuel L. Nunes ◽  
Luís B. Martins

The sustainable development involves the rational use of energy, by satisfying energy demands without compromising the safety of future supply. The use of renewable energy sources together with combined heat and power systems is currently considered a priority in Europe. The market trends are evolving to decentralized energy conversion with the increasing replacement of boilers and other conventional systems by small and micro-scale cogeneration units, able to produce the same amounts of useful energies. Micro scale cogeneration systems have been developed as ideal solutions to meet the energy needs for the building sector. These technologies, which include the Stirling engines, allow the production of high quality electricity and heat, efficiently and close to the final point of use. Stirling engines seem to be a good alternative for residential energy conversion. The main objective of this paper is to study alternative configurations for the regenerator of an alpha Stirling engine and evaluate the overall performance of the system. Numerical simulations were performed via a MatLab® code that includes the thermodynamic cycle analysis accounting for the effects of non-ideal heat exchangers and pumping losses. Based on a previously developed costing methodology, the investment purchase cost for each configuration is also estimated. Results showed that, for mean pressure values above 30 bar, the Stirling engine efficiency is higher for a regenerator with a wired mesh matrix rather than with a wrapped foil matrix. This is due both to better heat transfer and to lower pumping losses with the wired mesh configuration. The capital cost of the system was calculated and showed that the heater and the engine bulk are the most expensive components.


2015 ◽  
Vol 785 ◽  
pp. 576-580 ◽  
Author(s):  
Liaw Geok Pheng ◽  
Rosnani Affandi ◽  
Mohd Ruddin Ab Ghani ◽  
Chin Kim Gan ◽  
Jano Zanariah

Solar energy is one of the more attractive renewable energy sources that can be used as an input energy source for heat engines. In fact, any heat energy sources can be used with the Stirling engine. Stirling engines are mechanical devices working theoretically on the Stirling cycle, or its modifications, in which compressible fluids, such as air, hydrogen, helium, nitrogen or even vapors, are used as working fluids. When comparing with the internal combustion engine, the Stirling engine offers possibility for having high efficiency engine with less exhaust emissions. However, this paper analyzes the basic background of Stirling engine and reviews its existing literature pertaining to dynamic model and control system for parabolic dish-stirling (PD) system.


Author(s):  
Faisal Zahari ◽  
Muhammad Murtadha Othman ◽  
Ismail Musirin ◽  
Amirul Asyraf Mohd Kamaruzaman ◽  
Nur Ashida Salim ◽  
...  

<p>This paper presents the conceptual design of Stirling engine based Alpha and Beta configurations. The performances of Stirling engine based Beta configuration will be expounded elaborately in the discussion. The Stirling engines are durable in its operation that requires less maintenance cost.  The methodology for both configurations consists of thermodynamic formulation of Stirling Cycle, Schmidt theory and few composition of flywheel and Ross-Yoke dimension. Customarily, the Stirling engine based Beta configuration will operate during the occurrence of low and high temperature differences emanating from any type of waste heat energy. A straightforward analysis on the performance of Stirling engine based Beta configuration has been performed corresponding to the temperature variation of cooling agent. The results have shown that the temperature variation of cooling agent has a direct effect on the performances of Stirling engine in terms of its speed, voltage and output power. </p>


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 72 ◽  
Author(s):  
Ayodeji Sowale ◽  
Edward Anthony ◽  
Athanasios Kolios

Energy from waste heat recovery is receiving considerable attention due to the demand for power systems that are less polluting. This has led to the investigation of external combustion engines such as the free-piston Stirling engine (FPSE) due to its ability to generate power from any source of heat and, especially, waste heat. However, there are still some limitations in the modelling, design and practical utilisation of this type of engine. Modelling of the FPSE has proved to be a difficult task due to the lack of mechanical linkages in its configuration, which poses problems for achieving stability. Also, a number of studies have been reported that attempt to optimise the output performance considering the characteristics of the engine configuration. In this study the optimisation of the second-order quasi-steady model of the gamma-type FPSE is carried out using the genetic algorithm (GA) to maximise the performance in terms of power output, and considering the design parameters of components such as piston and displacer damper, geometry of heat exchangers, and regenerator porosity. This present study shows that the GA optimisation of the RE-1000 FPSE design parameters improved its performance from work done and output power of 33.2 J and 996 W, respectively, with thermal efficiency of 23%, to 44.2 J and 1326 W with thermal efficiency of 27%.


2021 ◽  
Vol 313 ◽  
pp. 06001
Author(s):  
Siddharth Ramachandran ◽  
Naveen Kumar ◽  
Venkata Timmaraju Mallina

Despite the higher efficiency advantage, the cost reduction of PV technology has been more successful compared to the dish Stirling engine (DSE) due to the large market volume and sturdy competition. Irrespective of the types of source, there exists a potential of waste heat recovery from Stirling engines operating at higher temperature regime. Accordingly, to make DSE commercially viable and efficient, innovative ways such as hybridization (combing a bottoming cycle), Co-generation, Tri-generation etc. need to be explored. In this paper, the techno-economic feasibility of hybridization of a typical solar DSE with a bottoming organic Rankine cycle (ORC) via. a heat recovery vapour generator (HRVG) is explored. The overall energetic and exergetic efficiency of the DSE has been improved by 5.79% and 5.64% while recovering the waste heat through a bottoming ORC. The design and effective incorporation of the HRVG with cooler side of the Stirling engine is identified to be crucial for the overall exergetic performance of solar Stirling-ORC. Further, the economic feasibility of a solar String-ORC combination is evaluated in terms of levelized cost of electricity (LCOE) and payback period. Both LCOE and payback period are found to be in comparable range with the PV technology.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4564 ◽  
Author(s):  
Mathias Scheunert ◽  
Robin Masser ◽  
Abdellah Khodja ◽  
Raphael Paul ◽  
Karsten Schwalbe ◽  
...  

The recuperation of otherwise lost waste heat provides a formidable way to decrease the primary energy consumption of many technical systems. A possible route to achieve that goal is through the use of Stirling engines, which have shown to be reliable and efficient devices. One can increase their performance by optimizing the piston motion. Here, it is investigated to which extent the cycle averaged power output can be increased by using a special class of adjustable sinusoidal motions (the AS class). In particular the influence of the regeneration effectiveness on the piston motion is examined. It turns out that with the optimized piston motion one can achieve performance gains for the power output of up to 50% depending on the loss mechanisms involved. A remarkable result is that the power output does not depend strongly on the limitations of the regenerator, in fact—depending on the loss terms—the influence of the regenerator practically vanishes.


2021 ◽  
Vol 313 ◽  
pp. 03002
Author(s):  
Linda Hasanovich ◽  
David Nobes

The Stirling engine is capable of converting any source of thermal energy into kinetic energy, which makes it an attractive option for utilizing low-temperature sources such as geothermal or waste heat below 100 °C. However, at these low temperatures, the effects of losses are proportionally higher due to the lower thermal potential available. One such significant loss is excess dead volume, wherein a significant contributor is the heat exchangers. The heat exchangers must be selected to optimize power output by minimizing the dead volume loss while maximizing the heat transfer to and from the engine. To better understand what the optimal geometry of the heat exchanger components is, a Stirling engine is modelled using a third-order commercial modelling software (Sage) and trends of engine properties of power, temperature, and pressure for different heat exchanger geometries are observed. The results indicate that there is an optimum heat exchanger volume and geometry for low temperature Stirling engines. This optimum is also affected by other engine properties, such as regenerator size and engine speed. These results provide insight into the optimal geometry of these components for low-temperature Stirling engines, as well as providing design guidance for future engines to be built.


2008 ◽  
Vol 19 (3) ◽  
pp. 4-19 ◽  
Author(s):  
H. Snyman ◽  
T.M. Harms ◽  
J.M. Strauss

Worldwide attempts are being made to increase the use of our renewable energy sources as well as to use our current fossil fuel energy sources more effi-ciently. Waste heat recovery forms a substantial part of the latter and is the focus of this project. Stirling technology finds application in both the renewable energy sector and in waste heat recovery. Investigating the applicability of Stirling engines in the above-mentioned fields is relevant to develop more efficient external combustion units as well as to utilize our renewable energy sources. Developing a design analysis and synthesis tool capable of opti-mizing Stirling powered units forms the main objec-tive of this project. The methodology followed to achieve this, involved the application of three differ-ent methods of analysis, namely the method of Schmidt, the adiabatic analysis and the simple analysis based on a five volume approach. The Schmidt analysis is used to obtain the internal engine pressure which is a required input for the adiabatic analysis while the simple analysis intro-duces pumping losses and regenerator inefficien-cies. These methodologies are discussed briefly in this paper. Experimental verification of the analyti-cal data was carried out on a Heinrici Stirling engine and both the analytical data and the experi-mental data are presented here. Shortcomings of these methods of analysis are highlighted and an alternative approach to solve particular shortcom-ings is presented.


2004 ◽  
Vol 126 (2) ◽  
pp. 812-818 ◽  
Author(s):  
Viorel Badescu

A solar stirling engine based on a horizontal selective flat-plate converter is analyzed in this work. A detailed model for the heat losses towards the atmosphere is presented. The engine’s output power is maximised numerically. The analysis is based on meteorological data measured at Viking Landers sites during clear sky and dust storm conditions. All the computations were performed for a solar collection area similar in size with that of Mars Pathfinder’s Sojourner. The efficiency of converting solar energy into mechanical work at noon is as high as 18%. The power provided by the engine is as high as 16 W during autumn and winter. These results suggest that under the Martian environment the performance of properly designed solar Stirling engines is comparable with that of PV cell power systems.


Sign in / Sign up

Export Citation Format

Share Document