scholarly journals The influence of the fuel spray nozzle geometry on the exhaust gas composition from the marine 4-stroke diesel engine

2018 ◽  
Vol 172 (1) ◽  
pp. 59-63
Author(s):  
Jerzy KOWALSKI

The paper presents experimental research on a 4-stroke, 3-cylinder, turbocharged AL25/30 Diesel engine. Research consisted in investigating the effect of the geometry of the fuel injectors on the exhaust gas composition from the engine. During measurements, the engine was operated with a regulator characteristic of a load range from 40 kW to 280 kW, made by electric water resistance. The engine was mechanically coupled to the electric power generator. Three observations were made for each engine load, operating with fuel injectors of varying geometry. All considered types of injectors were installed on all engine cylinders. Mentioned injectors differed in the size of the nozzle holes diameters, holes numbers and angles measured between the holes axis. Engine performance data were recorded with a sampling time of 1 s. Cylinder pressure and fuel injection pressure on the front of each injector were collected also. The composition of the exhaust gas was measured using an electrochemical analyzer. According to the results, the change of fuel nozzle geometry results in a change in fuel spraying and evaporation and consequently changes in the course of the combustion process. The effect of this is the change of the composition of the exhaust gas.

Alternative fuels are in demand to overcome limitations of fossil fuels since decades. Indian Standards of biodiesel exists and its wide application is appealed and a National Policy on Bio fuels was implemented by Ministry of New and Renewable Energy. This Paper presents a review of biodiesel, Indian standards and difference of ASTM/EN for biodiesel. Biodiesel and its different blend fuelled in Diesel engine exhibit different engine performance and exhaust gas emission characteristics. Various performance parameters affects compression ignition diesel engine (DI-CI) performance, list includes fuel injection pressure, fuel quantity injected and injection timing, shape of combustion chamber, position and size of injection nozzle hole, fuel spray pattern, etc. Few paramount factors governing DI-CI engine includes various types of biodiesel and its blending with diesel engine. Types of blending are namely mahua, jatropha, karanja, waste cooking oil etc. Authors have blended them with varying percentage with varying fuel injection pressure at different loads. Few have also used alumina as nano additives in mahua biodiesel (B25100Al2O3) to check it effects on performance parameters as well as on emission characteristics. Effect of blending with Karanja, Jatropha, Neem , mahua etc as biodiesel with inclusion of alumina as nano additives are reviewed for related performance parameters (i.e. brake thermal efficiency (BTE), brake specific fuel consumption (BSFC)) and emission characteristics (i.e. CO, HC, NOx) in exhaust gas emission in different conditions for DI-CI Engine performance.


Author(s):  
R. Senthil ◽  
R. Silambarasan ◽  
G. Pranesh

The present investigation is to analyse the influence of boost pressure and injection pressure on combustion process and emissions for various engine loads and speeds. A single cylinder diesel engine that is equipped with a manual direct injection system is considered for the experimental work. Emissions such as HC, NOx and brake specific fuel consumption were monitored using gas analyzer. A turbocharger and dilution tunnel is designed such a way that a boost pressure will be created from the compressor driven turbine using engine exhaust. The compressed air was mixed with the exhaust gas in the dilution tunnel to oxidize the hydrogen and carbon into water vapour and carbon dioxide.


2017 ◽  
Vol 19 (2) ◽  
pp. 202-213 ◽  
Author(s):  
Michal Pasternak ◽  
Fabian Mauss ◽  
Christian Klauer ◽  
Andrea Matrisciano

A numerical platform is presented for diesel engine performance mapping. The platform employs a zero-dimensional stochastic reactor model for the simulation of engine in-cylinder processes. n-Heptane is used as diesel surrogate for the modeling of fuel oxidation and emission formation. The overall simulation process is carried out in an automated manner using a genetic algorithm. The probability density function formulation of the stochastic reactor model enables an insight into the locality of turbulence–chemistry interactions that characterize the combustion process in diesel engines. The interactions are accounted for by the modeling of representative mixing time. The mixing time is parametrized with known engine operating parameters such as load, speed and fuel injection strategy. The detailed chemistry consideration and mixing time parametrization enable the extrapolation of engine performance parameters beyond the operating points used for model training. The results show that the model responds correctly to the changes of engine control parameters such as fuel injection timing and exhaust gas recirculation rate. It is demonstrated that the method developed can be applied to the prediction of engine load–speed maps for exhaust NOx, indicated mean effective pressure and fuel consumption. The maps can be derived from the limited experimental data available for model calibration. Significant speedup of the simulations process can be achieved using tabulated chemistry. Overall, the method presented can be considered as a bridge between the experimental works and the development of mean value engine models for engine control applications.


Author(s):  
Fengjun Yan ◽  
Junmin Wang

Fueling control in Diesel engines is not only of significance to the combustion process in one particular cycle, but also influences the subsequent dynamics of air-path loop and combustion events, particularly when exhaust gas recirculation (EGR) is employed. To better reveal such inherently interactive relations, this paper presents a physics-based, control-oriented model describing the dynamics of the intake conditions with fuel injection profile being its input for Diesel engines equipped with EGR and turbocharging systems. The effectiveness of this model is validated by comparing the predictive results with those produced by a high-fidelity 1-D computational GT-Power engine model.


Author(s):  
Girish Parvate-Patil ◽  
Manuel Vasquez ◽  
Malcolm Payne

This paper emphasizes on the effects of different biodiesels and diesel on; heat release, ignition delay, endothermic and exothermic reactions, NOx, fuel injection pressure due to the fuel’s modulus of elasticity and cylinder pressure. Two 100% biodiesel and its blends of 20% with of low sulfur #2 diesel, and #2 diesel are tested on a single cylinder diesel engine under full load condition. Engine performance and emissions data is obtained for 100% and 20% biodiesels blends and #2 diesel. Testes were conducted at Engine Systems Development Centre, Inc. (ESDC) to evaluate the effects of biodiesel and its blends on the performance and emissions of a single-cylinder medium-speed diesel engine. The main objective of this work was to gain initial information and experience about biodiesel for railway application based on which biodiesel and its blends could be recommended for further investigation on actual locomotives.


2018 ◽  
Vol 7 (4) ◽  
pp. 2594
Author(s):  
Razieh Pourdarbani ◽  
Ramin Aminfar

In this research, we tried to investigate all the fuel injection systems of diesel engines in order to select the most suitable fuel injection system for the OM357 diesel engine to achieve the highest efficiency, maximize output torque and reduce emissions and even reduce fuel consumption. The prevailing strategy for this study was to investigate the effect of injection pressure changes, injection timing and multi-stage injection. By comparing the engines equipped with common rail injection system, the proposed injector for engine OM357 is solenoid, due to the cost of this type of injector, MAP and controller (ECU). It is clear that this will not be possible only with the optimization of the injection system, and so other systems that influence engine performance such as the engine's respiratory system and combustion chamber shape, etc. should also be optimized. 


2018 ◽  
Vol 3 (2) ◽  
pp. 98-105
Author(s):  
Didit Sumardiyanto ◽  
Sri Endah Susilowati

AbstrakPenelitian ini dilakukan untuk mengetahui  pengaruh  pompa injeksi bahan bakar tekanan tinggi terhadap kinerja sebuah mesin pada mesin penggerak utama MV. ALAM JAYA II yang menggunakan mesin diesel YANMAR type M22-EN. Berdasarkan data-data yang diperoleh dilapangan, setelah dilakukan pembahasan bahwa tekanan pompa injeksi berpengaruh pada kinerja mesin diesel. Untuk tekanan pompa injeksi sebesar 820 kgf/cm2, kinerja yang dihasilkan mesin adalah : Daya Indikator 1204 kgf/cm2, Daya Efektif 1016 kgf/cm2, Efisiensi Thermal Efektif 32,0% dan konsumsi bahan bakar spesifik sebesar 192 g/hp.h. Sedangkan setelah dilakukan perbaikan pompa injeksi, tekanan pompa menjadi 1120 kgf/cm2, kinerja yang dihasilkan oleh mesin adalah : Daya efektif 1399 hp, Daya Efektif 1195 hp, Efisiensi Thermal Efektif : 37.32%, dan Konsumsi Bahan Bakar Spesifik sebesar 165.7 g/hp.h Dengan adanya perbaikan pompa injeksi sehingga dapat menaikkan tekanan injeksi dari 880 kgf/cm2 menjadi 1120 kgf/cm2, maka kinerja mesin dapat ditingkatkan Kata kunci: mesin diesel,pompa injeksi, kinerja mesin AbstractThis research was conducted to determine the effect of high pressure fuel injection pump on the performance of a machine on the MV main drive engine. ALAM JAYA II which uses the YANMAR type M22-EN diesel engine. Based on the data obtained in the field, after discussion that the injection pump pressure affects the performance of the diesel engine. For injection pump pressure of 820 kgf /cm2, the engine performance is: Indicator Power 1204 kgf /cm2, Effective Power of 1016 kgf /cm2, Effective Thermal Efficiency of 32.0% and specific fuel consumption of 192 g / hp.h. Whereas after the injection pump repairs, the pump pressure becomes 1120 kgf / cm2, the performance produced by the engine is: Effective 1399 hp, Effective 1195 hp, Effective Thermal Efficiency: 37.32%, and Specific Fuel Consumption of 165.7 g / hp. H With the improvement of the injection pump so that it can increase the injection pressure from 880 kgf / cm2 to 1120 kgf /cm2, the engine performance can be improvedKeywords: diesel engine, injection pump, engine performance


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Prabhakara Rao Ganji ◽  
Rajesh Khana Raju Vysyaraju ◽  
Srinivasa Rao Surapaneni ◽  
B. Karuna Kumar

AbstractIn recent years, engine emissions have been one of the important problems which are of great concern. Hence, there is a growing need to develop engines with reduced emission. In the present study, Variable Compression Ratio diesel engine model has been validated by comparing the simulation results with the experimental. The study is aimed at analyzing the effect of compression ratio, exhaust gas recirculation, fuel injection pressure and start of injection on engine performance and emission characteristics. Using composite desirability technique, the engine parameters have been optimized to achieve lower NOx, soot and ISFC. The optimum combination has been observed at Compression ratio 17.52, Start of injection −30.1 °aTDC, Fuel injection pressure 736.06 bar and Exhaust gas recirculation 28.29%. ISFC, NOx and soot are reduced by 2.37%, 29.11% and 83.81% respectively. Higher Target Fuel Distribution Index indicates the improved mixture homogeneity for the optimized parameters.


Sign in / Sign up

Export Citation Format

Share Document