Computer aided design of electromechanical transducer of gated traction motor by using modern software

Author(s):  
Roman Proshutinsky ◽  
Oleg Kolodkin

Objective: To develop a system of computer aided design for electrical traction drive complex, as a component of CAD for electric rolling stock. Modern approach for electrical traction drive complex design means the development of assembly of interconnected systems, such as electrical traction motor, transducer, control system, etc. The most striking instance of such an assembly is gated traction motor, that is somehow in-between electric machines and electric drives. It is usefull to start the developing of CAD gated traction motor by developing the CAD system for electromechanical transducer of gated traction motor. Methods: In the base of CAD system under development there is a technology of design of electromechanical transducer of gated traction motor. At the stage of electromechanical transducer magnetic circuit calculation the software for simulation of magnetic fields by finite elements method was used. Results: The paper suggests the structure diagram of CAD system for electromechanical transducer of gated traction motor. Calculating software language is Octave. The paper provides the results of magnetic field calculations for electromechanical transducer of gated traction motor FEMM software for finite-element simulation. Based on the results of magnetic field calculations the curve of electromechanical transducer energizing is plot. Also the practicability of FEMM software implementation at the design stage of magnetic circuit is confirmed. Practical importance: Obtained results are useful for creation of educational and research system for CAD for electric traction drive complex. Development of CAD system for gated traction motor will allow to master methods and approaches of design for electric machines and semiconductor complexes of electric traction drives in general.

Author(s):  
S. Minami ◽  
T. Ishida ◽  
S. Yamamoto ◽  
K. Tomita ◽  
M. Odamura

Abstract A concept for the initial stage of the mechanical design and its implementation in the computer-aided design (CAD) are presented. The process of decision making in design is: (1) determining an outline of the whole assembly using a 2-dimensional model that is easy to operate; (2) checking the outline using a 3-dimensional model in which it is easy to identify the spatial relationships; (3) determining details of its sub-assemblies or their components using the 2-dimensional model; and (4) checking the details using the 3-dimensional model. The CAD system must provide consistent relationships through all the steps. For that, following functions are implemented in our prototype system: (1) a 2D and 3D integrated model for consistency between 2- and 3-dimensional shapes, (2) a hierarchical assembly model with dimensional constraints for consistency within an assembly and their components, and (3) a check on constraints for consistency between shapes and designers’ intentions. As a result, the system can provide an environment well fitted to the designers’ decision making process.


Author(s):  
S. N. Trika ◽  
P. Banerjee ◽  
R. L. Kashyap

Abstract A virtual reality (VR) interface to a feature-based computer-aided design (CAD) system promises to provide a simple interface to a designer of mechanical parts, because it allows intuitive specification of design features such as holes, slots, and protrusions in three-dimensions. Given the current state of a part design, the designer is free to navigate around the part and in part cavities to specify the next feature. This method of feature specification also provides directives to the process-planner regarding the order in which the features may be manufactured. In iterative feature-based design, the existing part cavities represent constraints as to where the designer is allowed to navigate and place the new feature. The CAD system must be able to recognize the part cavities and enforce these constraints. Furthermore, the CAD system must be able to update its knowledge of part cavities when the new feature is added. In this paper, (i) we show how the CAD system can enforce the aforementioned constraints by exploiting the knowledge of part cavities and their adjacencies, and (ii) present efficient methods for updates of the set of part cavities when the designer adds a new feature.


Author(s):  
M. J. Jakiela ◽  
P. Y. Papalambros

Abstract System requirements and system design for integrating a production rule program and a computer aided design system are presented. An implementation using a commercially available graphics modeling system is described. A “suggestive mode” interface is programmed as an example with application to design for automated assembly. Initial use of the implementation indicates that encoding production rules is more difficult than with conventional text-only knowledge-based systems, but that this system is a more effective way to use artificial intelligence techniques in design.


Author(s):  
Colin Chong ◽  
Kiyoshi Sogabe ◽  
Kosuke Ishii

Abstract This paper addresses the problem of balancing rotational plastic parts during the early stages of design. The study develops an interactive methodology that uses a solid modeling CAD system and considers injection molding concerns simultaneously with static and dynamic balance. The Transfer Matrix Method evaluates the dynamic characteristics by predicting the approximate critical speed of the part. Design Compatibility Analysis (DCA) checks for injection molding guidelines. Using these evaluation modules interactively, designers can develop a functional and manufacturable part quickly.


Author(s):  
Xun Xu

One of the key activities in any product design process is to develop a geometric model of the product from the conceptual ideas, which can then be augmented with further engineering information pertaining to the application area. For example, the geometric model of a design may be developed to include material and manufacturing information that can later be used in computer-aided process planning and manufacturing (CAPP/CAM) activities. A geometric model is also a must for any engineering analysis, such as finite elopement analysis (FEA). In mathematic terms, geometric modelling is concerned with defining geometric objects using computational geometry, which is often, represented through computer software or rather a geometric modelling kernel. Geometry may be defined with the help of a wire-frame model, surface model, or solid model. Geometric modelling has now become an integral part of any computer-aided design (CAD) system. In this chapter, various geometric modelling approaches, such as wire-frame, surface, and solid modelling will be discussed. Basic computational geometric methods for defining simple entities such as curves, surfaces, and solids are given. Concepts of parametric, variational, history-based, and history-free CAD systems are explained. These topics are discussed in this opening chapter because (a) CAD was the very first computer-aided technologies developed and (b) its related techniques and methods have been pervasive in the other related subjects like computer-aided manufacturing. This chapter only discusses CAD systems from the application point of view; CAD data formats and data exchange issues are covered in the second chapter.


2020 ◽  
Vol 7 (5) ◽  
pp. 603-614 ◽  
Author(s):  
Mutahar Safdar ◽  
Tahir Abbas Jauhar ◽  
Youngki Kim ◽  
Hanra Lee ◽  
Chiho Noh ◽  
...  

Abstract Feature-based translation of computer-aided design (CAD) models allows designers to preserve the modeling history as a series of modeling operations. Modeling operations or features contain information that is required to modify CAD models to create different variants. Conventional formats, including the standard for the exchange of product model data or the initial graphics exchange specification, cannot preserve design intent and only geometric models can be exchanged. As a result, it is not possible to modify these models after their exchange. Macro-parametric approach (MPA) is a method for exchanging feature-based CAD models among heterogeneous CAD systems. TransCAD, a CAD system for inter-CAD translation, is based on this approach. Translators based on MPA were implemented and tested for exchange between two commercial CAD systems. The issues found during the test rallies are reported and analyzed in this work. MPA can be further extended to remaining features and constraints for exchange between commercial CAD systems.


Author(s):  
Ali Fazli ◽  
Behrooz Arezoo ◽  
Mohammad H. Hasanniya

A computer-aided design (CAD) system is developed for automatic process design and finite element (FE) modeling of axisymmetric deep drawn components. Using the theoretical and experimental rules, the system initially designs the process sequence of the component. The obtained process sequence is automatically modeled in abaqus software and the system tests whether failure occurs. The failure is supposed to happen when the fracture is predicted in FE simulation. If failure is predicted, the system changes the appropriate process parameters and carries out the simulation process again until all drawing stages are successful. The system returns the requested parameters for die design such as part geometries in middle stages, drawing forces, blank-holder forces, die, and punch profiles radii. The system is successfully tested for some components found in industry and handbooks.


2004 ◽  
Vol 4 (1) ◽  
pp. 67-78 ◽  
Author(s):  
Li Chen, ◽  
Tingjin Wang, and ◽  
Zhijie Song

Collaborative CAD systems enabling collaboration in computer-aided design processes among distributed designers are gaining more and more attention. Yet, such systems, especially in support of collaborative assembly modeling, are hardly achievable. In an effort to bridge this gap, we are dedicated to developing a collaborative CAD system with aim at 3D assembly modeling. As part of this effort, this paper addresses one function module of the system, a Web-based Product Structure Manager, which enables the Collaborative Product Structure Management (CPSM) in collaborative assembly modeling. In particular, CPSM facilitates product data sharing among distributed designers and supports collaboration in product structure creation and modification. A bench clamp assembly is used as an example to illustrate the Product Structure Manager for supporting collaborative assembly modeling.


Author(s):  
Akio Doi ◽  
◽  
Hiroki Takahashi ◽  
Bunei Syuto ◽  
Masaaki Katayama ◽  
...  

We propose the use of a computer-aided design (CAD) system for treating bone fractures in small animals. During surgical planning, the veterinarian sketches a simple plate by referring to computed tomography images. A CAD operator then uses polygonal approximation (triangulation) of the surface of the bone region to model the plate. After the approximated shape is imported into the CAD system as a triangular mesh, a detailed design of the plate is prepared by referring to the abovementioned sketch. The plate can be designed to match the bone surface since the plate surface follows the curvature of the surface of the exported triangular mesh. The bone shape and the plate are eventually converted into polygons, and a structural model identical to the fractured part of the bone can be reproduced using a 3D printer, which allows for alignment to be performed at full scale. In this study, we examine the applicability of the proposed system by designing the most appropriately shaped plates for bone fracture therapy for small dogs brought to a veterinary clinic for treatment.


Author(s):  
V. V. Zhadnov ◽  
A. N. Zotov

This article discusses problems of importing data from system of CAD (Computer-Aided Design) to dependability prediction software. Characteristics of dependability of electronic modules to a large extent define reliability of electronic equipment which contains them. Dependability of electronic modules is established on the early stages of engineering and is usually calculated by special software. Obviously, the dependability prediction result accuracy will depend on the quality and fullness of input data. Thus, the purpose of this study is to improve the accuracy of dependability prediction of electronic modules calculation results in dependability prediction software by automating the process of inputting data about electrical components and PCB’s (Printed Circuit Board) from CAD-system. The object of the study is typical information about electronic modules which is needed to calculate dependability on early stages of engineering with taking into account the probabilistic characteristics of the life components of its electronic components. The subject of the study are methods, models and algorithms applicable to the transferring data from CAD-system to dependability prediction software. Based on results of analysis of existing data transferring methods between software packages from different vendors, usage of Excel tables and customizable templates was justified. Practical implementation of this method was developed for Altium Designer and ASONIKA-K-SCh dependability prediction software package. An import program was developed which allowed to transfer data from Altium Designer to ASONIKA-K-SCh using Excel tables and customizable templates. The import program as integrated into ASONIKA-K-SCh software. Practical usage showed that it allowed not only to reduce laboriousness of PCB’s and electronical components’ data inputting, but also to reduce a great amount of possible mistakes.


Sign in / Sign up

Export Citation Format

Share Document