The peculiarities of constructing bridges at high-speed mainline railroads

Author(s):  
Vladimir Smyrnov ◽  
Anastasia Dyayenko ◽  
Leonid Dyachenko

Objective: To analyze calculation and construction peculiarities of bridgework at high-speed networks (VSM). Methods: Mathematical simulation, as well as numerical and analytical methods of structural engineering was applied. Results: The main peculiarities of bridge construction at high-speed networks (VSM) were analyzed in the given study. It was proved that artificial constructions at VSM operate in the conditions which differ considerably from the conditions at common railroad lines. The former include the need in continuous welded rail design along the whole length of a bridge, requirement for high stiffness of a structure; consideration of aerodynamic influence of a rolling stock, moving with high speed, on structures, consideration of “train-bridge” system’s elements interaction in order to identify resonant modes of train operation, which result in increased dynamic impact on a bridge, railway vehicles, etc. Calculation results of a “bridge- continuous welded rail” system interaction under temperature and train influence for specific types of bridgeworks multi-span beam discontinuous and continuous elevated structures were presented in the article. The influence of length, flow diagram and longitudinal stiffness of intermediate structures on force value, occurring in the rails of a rolling stock was stated. Practical importance: The description of some peculiarities of train operation at VSM bridges, which are to be considered during design engineering, were presented as well as certain measures, providing operation security and comfort of train passengers, were suggested.

Author(s):  
Alexey Kolos ◽  
Andrey Petryayev ◽  
Irina Kolos ◽  
Vadim Govorov ◽  
Evgeniy Shekhtman

Objective: Scientific justification of requirements to roadbed design of high-speed networks (HSN) for the purpose of constructing “Moscow–Kazan–Yekaterinburg” railroad line, as well as implementation of “Eurasia” and “Yekaterinburg–Chelyabinsk” HSN projects. Methods: The analysis of modern roadbed design standards for HSN was carried out. The justification of HSN roadbed norms and requirements involved system analysis of HSN engineering and construction in Western Europe, China, Japan and other countries with well-developed high-speed network. Results: The fundamental principles and requirements, which are to be taken as a basis of HSN roadbed engineering, were determined. Practical importance: The obtained results are to be used in HSN roadbed engineering and construction, performed on the territory of the Russian Federation.


Author(s):  
Igor Ivanov ◽  
Dmitriy Kononov ◽  
Sergey Urushev

Object: To show the lack of wheelset operating life efficiency use in case traditional methods of wheel tread reprofiling were used in the process of repair works. To consider the possibilities of further improvement of this process on the basis of new reprofiling technologies, using the deep and high-speed grinding. Methods: The methods of wheel tread reprofiling were analyzed, the effective process solutions, based on theoretical conclusions and current practical knowledge, were studied. Results: Wheel set wastage in case of using the traditional ways of reprofiling was estimated. Preliminary parameters of wheelset reprofiling modes using high-speed grinding were estimated, providing for the increase in wheel set operational life and reprofiling performance enhancement. Practical importance: The appropriateness of rolling stock wheel tread reprofiling, by using the method of infeed high-speed profile grinding, was presented. The obtained results may be applied in the development of requirements specification for wheel tread reprofiling machine at repair facilities of the Russian Railways.


2019 ◽  
Vol 944 ◽  
pp. 439-447 ◽  
Author(s):  
Guan Zhen Zhang ◽  
Rui Ming Ren ◽  
Hong Xiang Yin

In recent years, high speed railway technology has developed rapidly in China. Long routing of high-speed trains, low temperatures, corrosive environments and sand damage are unique to China’s operating environment. As an important safety component of rolling stock, the safety and reliability of the wheels is of deep concern and high value. It is significant to carefully study and systematically summarize the damage from different failure types in high-speed railway wheels under current conditions, and determine the influencing factors and mechanisms of wheel failures in order to improve railway operation safety. In this paper, the damage forms of high-speed railway wheels in China are introduced, and the main influencing factors of wheel failure are discussed in combination with wheel damage characteristics. What’s more, damage mechanism is analyzed aiming at providing theoretical references for reducing failure rate and improving train operation quality.


Author(s):  
Artem Kyselev ◽  
Lyudmila Blazhko ◽  
Andrey Romanov

Objective: To identify the rolling-stock stability, force reduction, emerging in the process of wheel-rail interaction, the reduction of wheel thread and wheel flange wear, horizontal wear during high-speed running. To consider issues of wheel-rail interaction, that is the influence of a wheel pair equivalent conicity on rolling stock operation. Lateral motion of a wheel pair about an axis of a track in accordance with conicity parameters occurs in the process of standard tapered wheel-rail interaction. Methods: Calculation methods of equivalent conicity and basic assumptions in design diagram were presented. The main functional dependencies of equivalent conicity were determined. “All-purpose mechanism” bundled software, developed on the basis of FastSim algorithm introduced by G. Kalker, was applied for modeling of wheel pair operation on a railway track. Results: Interaction of VNIIZhT-RM-70 wheel for “Sapsan” high-speed trains with R65 rail type was studied, as well as UIC60 rail type used on European railroads. Wheel rolling occurs in different circumferential directions in case of lateral movement of a wheel pair Oscillating motion was described, as well as the parameters on the basis of which equivalent conicity is formed. Practical importance: The necessity in reduction of equivalent conicity to efficiency parameters of high-speed running realization on Russian railroads was revealed by means of modeling.


2021 ◽  
Vol 18 (3) ◽  
pp. 335-339
Author(s):  
Vladimir N. SMIRNOV ◽  
◽  
Andrey V. LANG ◽  
Nikita A. LABUTIN ◽  
◽  
...  

Objective: Obtaining differential equations of the “bridge-train” system, the solution of which allows one to identify the optimal dynamic parameters of the vehicle of high-speed rolling stock and bridge structures when rolling load moves at high speed. Methods: Derivation of differential equations of the “bridge– train” system by the analytical method. Results: Obtaining formulas for determining the acceleration of the spring borne part of rolling stock vehicles depending on track irregularities. Practical importance: Based on the results of calculations according to these formulas, a reasonable assignment of the values of camber and the possibility of assessing the effect of random irregularities of the rail track on the bridge are provided.


2021 ◽  
Vol 19 (1) ◽  
pp. 194-209
Author(s):  
M. M. Zheleznov ◽  
O. I. Karasev ◽  
S. S. Trostyansky ◽  
R. G. Smirnov

High-speed passenger railway transportation is one of the priorities of scientific and technological development for most of the leading world railway companies that have global plans for construction of new high-speed rail lines (HSR).General review refers to plans of selected countries regarding construction of high-speed railways and the priority technologies/solutions required for the efficient provision of high-speed passenger services, as well as to costs and advantages associated with HSR construction. Besides, comparison of promising technology and adopted technical solutions is followed by assessment of their readiness level, and by features of HS trains operated by leading companies. Most important technologies comprise intelligent systems of autonomous train operation, remote traffic control, digital simulation of interaction of rolling stock and infrastructure, automated decision support systems, geospatial infrastructure monitoring, and real-time remote condition monitoring of rolling stock and infrastructure.Conclusions drawn argue in favour of promising character of research in the field of breakthrough technology conducted by railways, possibilities for Russia to join the countries with most advanced high-speed rail passenger transportation.


Author(s):  
Olga Morozova ◽  
Sergey Shkurnykov

Objective: To determine combined traffic sections of high-speed passenger and freight trains in countries of the European Union, as well as the main reasons for organizing the combined traffic on these sections. Methods: The analysis and theoretical integration of data on combined traffic of high-speed passenger and freight trains in countries of the European Union were applied. Results: It was found that combination of types of trains on high-speed networks was not only possible but sometimes necessary. The sections of high-speed passenger and freight trains combined traffic on one rail track of European high-speed networks were detected (VSM). It was shown, that the main reasons for organization of combined traffic were passing of contour and high obstacles: such sections are often situated in crossing areas of rock mass, large water bodies and population centers; as well as investment justification in areas where passenger transport demand is inadequate or freight revenue is high enough to compensate expenditures on combined traffic organization. Practical importance: The experience of combined traffic organization at European high-speed networks might be applied at domestic VSM.


2021 ◽  
Vol 2021 (4) ◽  
pp. 453-459
Author(s):  
A. A. Vorob’ev ◽  
◽  
Ya. S. Vatulin ◽  
D. D. Karimov ◽  
◽  
...  

Objective: To evaluate the infl uence of the parameters of current collectors of high-speed and very high-speed trains on the value of aerodynamic resistance. To study the effect of airfl ow on a pantograph aerodynamic device using SolidWorks software. Methods: A comparison of the obtained values of aerodynamic air resistance with those that were produced earlier is carried out. Results: By means of aerodynamic device, it is possible to reduce the speed of the air fl ow effecting the pantograph, to reduce the values of aerodynamic resistance and energy consumption, to extend the service life of current collectors. Practical importance: The proposed design can improve the current collection, which will reduce the load on the overhead line and the pantograph slide, and reduce the energy consumption of electric rolling stock.


Sign in / Sign up

Export Citation Format

Share Document