scholarly journals Dual-cured adhesive system improves adhesive properties of dentin cavities restored with a bulk-fill resin composite

2022 ◽  
Vol 21 ◽  
pp. e226262
Author(s):  
Ana Margarida dos Santos Melo ◽  
Anne Kaline Claudino Ribeiro ◽  
Diana Araújo Cunha ◽  
Nara Sousa Rodrigues ◽  
Vicente de Paulo Aragão Saboia ◽  
...  

Aim: To evaluate the impact of a dual-cured adhesive system on the in situ degree of conversion (DC), bond strength (BS) and failure mode (FM) of adhesive interfaces in dentin cavities restored with a bulk-fill resin composite. Methods: 4-mm-deep dentin cavities with a 3.1 C-factor were created in 68 bovine incisors (n = 17 per group). The lightcured (Scotchbond™ Universal) or the dual-cured (Adper™ Scotchbond™ Multi-purpose Plus) adhesive system was applied to the cavities, which were then restored with a bulkfill resin composite (Filtek™ Bulk Fill). In situ DC analysis was performed by means of micro Raman spectroscopy at the top and bottom interfaces. Push-out BS was measured in a universal testing machine after 24-h or 6-month water storage. FM was determined with a stereomicroscope. Data of in situ DC and BS were analyzed by two-way analysis of variance (ANOVA) and Tukey test (p<0.05), while the FM was analyzed descriptively. Results: The groups that received the dual-cured adhesive system showed statistically higher in situ DC and BS than those that received the light-cured adhesive system. Cohesive failure mode was the most frequent in all conditions. Conclusion: In situ DC and BS were influenced by the curing strategies of the adhesive systems with better performance of the dual-cured material.

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Rodrigo Vieira Caixeta ◽  
Ricardo Danil Guiraldo ◽  
Edmilson Nobumitu Kaneshima ◽  
Aline Silvestre Barbosa ◽  
Cassiana Pedrotti Picolotto ◽  
...  

The aim of this study was to evaluate the bond strengths of composite restorations made with different filler amounts and resin composites that were photoactivated using a light-emitting diode (LED). Thirty bovine incisors were selected, and a conical cavity was prepared in the facial surface of each tooth. All preparations were etched with Scotchbond Etching Gel, the Adper Scotchbond Multipurpose Plus adhesive system was applied followed by photoactivation, and the cavities were filled with a single increment of Filtek Z350 XT, Filtek Z350 XT Flow, or bulk-fill X-tra fil resin composite (n= 10) followed by photoactivation. A push-out test to determine bond strength was conducted using a universal testing machine. Data (MPa) were submitted to Student’st-test at a 5% significance level. After the test, the fractured specimens were examined using an optical microscope under magnification (10x). Although all three composites demonstrated a high prevalence of adhesive failures, the bond strength values of the different resin composites photoactivated by LED showed that the X-tra fil resin composite had a lower bond strength than the Filtek Z350 XT and Filtek Z350 XT Flow resin composites.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Katrin Zumstein ◽  
Anne Peutzfeldt ◽  
Adrian Lussi ◽  
Simon Flury

This study investigated the effect of SnCl2/AmF pretreatment on short- and long-term bond strength of resin composite to eroded dentin mediated by two self-etch, MDP-containing adhesive systems. 184 dentin specimens were produced from extracted human molars. Half the specimens (n=92) were artificially eroded, and half were left untreated. For both substrates, half the specimens were pretreated with SnCl2/AmF, and half were left untreated. The specimens were treated with Clearfil SE Bond or Scotchbond Universal prior to application of resin composite. Microtensile bond strength (μTBS) was measured after 24 h or 1 year. Failure mode was detected and EDX was performed. μTBS results were statistically analyzed (α=0.05). μTBS was significantly influenced by the dentin substrate (eroded < noneroded dentin) and storage time (24 h > 1 year; p<0.0001) but not by pretreatment with SnCl2/AmF or adhesive system. The predominant failure mode was adhesive failure at the dentin-adhesive interface. The content of Sn was generally below detection limit. Pretreatment with SnCl2/AmF did not influence short- and long-term bond strength to eroded dentin. Bond strength was reduced after storage for one year, was lower to eroded dentin than to noneroded dentin, and was similar for the two adhesive systems.


2014 ◽  
Vol 39 (1) ◽  
pp. 64-71 ◽  
Author(s):  
DMS Simões ◽  
RT Basting ◽  
FLB Amaral ◽  
CP Turssi ◽  
FMG França

SUMMARY The aim of this study was to evaluate the effect of a chlorhexidine and/or ethanol application on the bond strength of an etch-and-rinse, hydrophobic adhesive system either under in vitro aging or in situ cariogenic challenge. The dentin surface of 36 human third molars were flattened and allocated into four groups to be treated with chlorhexidine, ethanol, or chlorhexidine + ethanol or left unexposed to any solution (control) (n=9). Then, a resin composite restoration was made on the dentin surface and longitudinal sticks were obtained. Sticks from each tooth were assigned to three test conditions: stored in water in vitro for 24 hours, stored in water in vitro for 6 months, or worn in situ for 14 days. During in situ wear time, a high-cariogenic challenge condition was simulated. Specimens were tested for microtensile bond strength (μTBS). Multivariate analysis of variance and Tukey's test showed that chlorhexidine, ethanol, or chlorhexidine + ethanol did not affect the μTBS. The in vitro μTBS values were significantly lower for the specimens stored for 6 months than for those stored for 24 hours. Intermediate μTBS values were shown by the specimens worn in situ. Thus, use of chlorhexidine and/or ethanol was incapable of containing the degradation at the bond interface in the in vitro model. The in situ model was capable of reducing bond strength similarly to the in vitro/6 months model. Despite this, the in situ bond strength was still similar to that of the in vitro/24-hour model.


2014 ◽  
Vol 13 (1) ◽  
pp. 7
Author(s):  
Dewi Puspitasari ◽  
Andi Soufyan ◽  
Ellyza Herda

Composite resin is a widely used aesthetic restoration. The restoration can fail due to secondary caries. Chlorhexidinegluconate 2% is used as a cavity disinfectant to eliminate microorganisms on the prepared cavity and to prevent thesecondary caries. The purpose of this study was to analyze the effect of chlorhexidine gluconate 2% to the bondstrength of composite resin with self etch system adhesive on dentine. Sixteen specimens of buccal dentine of premolarscrown are divided into 2 different groups. Group I: Clearfil SE Bond self-etch primer was applied for 20 seconds,Clearfil SE Bond bonding was applied for 5 seconds and polymerized for 10 seconds. Composite resin was constructedincrementally and polymerized for 20 seconds. Group II: prior to self etch primer application as in group I,chlorhexidine gluconate 2% was applied for 15 seconds. Shear bond strength was tested using Testing machine andanalyzed with unpaired T test. The highest shear bond strength was obtained by applying chlorhexidine gluconate 2%.The study concludes that chlorhexidine gluconate 2% application to dentine did not affect significantly to the bondstrength composite resin using self etch adhesive systems.


2015 ◽  
Vol 18 (4) ◽  
pp. 19
Author(s):  
Rayssa Ferreira Zanatta ◽  
Beatriz Maria da Fonseca ◽  
Stella Renata Steves ◽  
Carlos Rocha Gomes Torres ◽  
Sergio Eduardo Paiva Gonçalves

<p>The aim of the present study was to compare the effects of Nd:YAG laser application in root canals on bond strengths of fiber posts. Thirty single-rooted bovines were randomly divided into three groups (n=10); root canal instrumentation was performed, and pretreatment was conducted as follows: C group: conventional treatment (without laser irradiation); ALC group: Nd:YAG laser was applied after adhesive; and LAC group: Nd:YAG laser was applied before adhesive. The fiber posts Rebilda 15 DC (Voco) were cemented with an adhesive system and resin cement, in accordance with the manufacturer’s instructions. Six slices with 1.0mm height was obtained for of each root and bond strength was measured by push-out test using a universal testing machine (0.5 mm/min). Data were analyzed using Kruskal-Wallis and Dunn’s tests (p &lt;0.05). Push-out bond strengths to root canal dentin were affected by the type of treatment and root third. The use of Nd:YAG laser after the application of adhesive system had a higher bonding performance compared with the use of laser before the application. Also, cervical and medium third presented higher bond strength values than the apical third. It must be conclude that the laser irradiation over the non-cured adhesive system is more efficient for increase in bond strength than the irradiation after the application of the adhesive. However, the use of 60mJ of laser energy is not sufficient to improve the bonding performance.</p>


2017 ◽  
Vol 20 (4) ◽  
pp. 55
Author(s):  
Rafael Avellar de Carvalho Nunes ◽  
Flávia Lucisano Botelho do Amaral ◽  
Fabiana Mantovani Gomes França ◽  
Cecilia Pedroso Turssi ◽  
Roberta Tarkany Basting

<p class="Corpo"><strong>Objective</strong>: the aim of the present study was to evaluate the influence of adding different concentrations of chitosan to an experimental two-step etch-and-rinse adhesive system on the bond strength and failure mode to dentin. <strong>Material</strong> <strong>and</strong> <strong>Methods</strong>: thirty-two flat dentin surfaces were obtained from extracted human third molars and divided into four groups  (n=8) for application of the adhesive systems: AD - conventional two-step adhesive system (Adper Single Bond 2); EXP – experimental two-step etch-and-rinse adhesive system; Chi0.2% - EXP with addition of 0.2% Chitosan; Chi0.5% - EXP with addition of 0.5% Chitosan. Resin composite build-ups were made and the composite/dentin specimens were sectioned to obtain rectangular beams with a bond area of approximately 1mm<sup>2</sup>. After 24 hours, the sticks were submitted to microtensile bond strength tests in a universal test machine. The fracture pattern was evaluated under a stereoscopic loupe at 40X magnification. <strong>Results</strong>: one-way analysis of variance showed that the type of adhesive system had no significant effect on the bond strength values (p = 0.142), showing the mean bond strength values (standard deviation), in MPa, for the groups as follows: AD=20.1 (5.4); EXP=16.6 (2.3); Chi0.2%=16.1 (2.8); Chi0.5%=16.9 (2.3). In all the groups there was predominance of cohesive fractures in dentin, representing 68 to 82% of the failure modes. <strong>Conclusion</strong>: the addition of 0.2 or 0.5% of chitosan had no influence on the bond strength and failure mode of an experimental two-step etch-and-rinse adhesive system to dentin.</p><p class="Corpo"><strong>Keywords</strong></p><p class="Corpo">Chitosan; Dental Adhesives; Failure Mode; Microtensile Bond Strength.</p>


2003 ◽  
Vol 11 (4) ◽  
pp. 342-347 ◽  
Author(s):  
Marcelo Giannini ◽  
Patrícia Chaves ◽  
Marcelo Tavares de Oliveira

This in vitro study evaluated the effect of tooth age on the tensile bond strength of Prime & Bond NT adhesive system to dentin. Human third molars from the five age groups were analyzed: A- 17 to 20yrs, B- 21 to 30yrs, C- 31 to 40yrs, D- 41 to 50yrs and E- 51 to 63yrs. The occlusal enamel was removed using a diamond saw under water cooling and the dentin surface was wet-ground with 600-grit SiC paper to obtain flat surfaces. The adhesive system was applied according to the manufacturer's instructions and a 6-mm high resin "crown" was built-up with resin composite. Teeth were stored for 24 hours in distilled water at 37ºC and prepared for micro-tensile testing. Each specimen was mounted in a testing jig attached to a universal testing machine and stressed in tension at a crosshead speed of 0.5mm/min until failure. The means of tensile bond strength were (MPa): A- 21.42 ± 7.52ª; B- 30.13 ± 10.19ª; C- 31.69 ± 11.78ª; D- 30.69 ± 8.47ª and E- 35.66 ± 9.54ª. No statistically significant difference was observed among the age groups (p > 0.05). The results suggested that the tensile bond strength of the adhesive system was not significantly affected by dentin aging.


2019 ◽  
Vol 22 (3) ◽  
pp. 335-343
Author(s):  
Fatih Tulumbaci ◽  
Emre Korkut ◽  
Hazal Ozer ◽  
Mutlu Özcan

Objective: The purpose of this study was to evaluate mechanical and physical properties of three different light-curable resin-based materials (TheraCal LC, Biner LC, and CalciPlus LC) with or without BAG. Material and Methods: 15 cylindrically shaped specimens (n=5) were prepared for contact angle test. The test values (Θ) were determined with the sessile drop method using three test liquids. 30 acrylic cylindrical blocks were prepared, and holes of (6mmx1mm) were made in the center of the cylinders for shear bond strength test. An adhesive system and a restorative composite material were applied via cylindrically shaped plastic tubes of (2mmx2mm) at the center of the light-curable resin-based material surfaces. The specimens were mounted in a universal testing machine. A crosshead speed of 1 mm/min was applied to each specimen using a knife-edge blade. Results: The highest (74.77°±13.56) and the lowest (35.35°±12.89) contact angle values were recorded for the MB Biner LC group and the CalciPlus LC, respectively. Statistically significant differences observed in contact angle values between the test groups (p<0.05). The surface free energy of Biner LC (γS 36.22) was lower than that of TheraCal LC (γS 44.70) and CalciPlus LC (γS 46.20) (p<0.05). There was no significant difference in shear bond strength values between TheraCal LC and CalciPlus LC (p>0.05). Conclusions: Hydrophilic property of Theracal LC and Calciplus LC resulted in better bonding strength in these materials. The BAG used in Calciplus LC did not adversely affect mechanical and surface properties of the material.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Afaf Y. Al-Haddad ◽  
Muralithran G. Kutty ◽  
Zeti Adura Che Ab Aziz

Objectives. To evaluate the push-out bond strength of experimental apatite calcium phosphate coated gutta-percha (HAGP) compared to different commercially available coated gutta-percha root obturation points. Methods. Extracted teeth were selected and instrumented using ProTaper rotary files. The canals were assigned into five equal groups and obturated using matching single cone technique as follows: EndoREZ cones and EndoREZ sealer, Bioceramic Endosequence gutta-percha (BCGP) with Endosequence BC sealer, Active GP with Endosequence BC sealer (ActiV GP), conventional GP with Endosequence BC sealer, and HAGP with Endosequence BC sealer. Each root was sectioned transversally at the thickness of 1±0.1 mm to obtain 5 sections (n=25 per group). The specimens were subjected to push-out test using a Universal Test Machine at a loading speed of 0.5 mm/ min. Failure modes after push-out test was examined under stereomicroscope and the push-out data were analyzed using ANOVA and the post hoc Dunnett T3 test (p = 0.05). Results. The highest mean bond strength was yielded by HAGP followed by BCGP, ActiV GP, conventional GP, and EndoREZ. There were significant differences between EndoREZ and all other groups (p<0.001). The prominent failure mode of HAGP was mixed mode, whereas EndoREZ exhibited adhesive failure mode. Conventional GP, ActiV GP, and BCGP showed cohesive failure mode. Conclusion. HAGP showed promising results to be used as root canal filling material in combination with bioceramic sealer.


2019 ◽  
Vol 887 ◽  
pp. 72-79
Author(s):  
Barbora Nečasová ◽  
Pavel Liška ◽  
Jiří Šlanhof

The main objective of this case study is to compare whether standardized test methods are able reliably prognosticate the performance of joint sealants and adhesives after installation in a construction. The authors of presented study believe that existing testing procedures intended for testing of bonded and sealed joints do not fully reflect the weather changes exterior surfaces have to withstand. Based on previous experiences a unique geometry of testing sample was used for this purpose allowing the testing of a so-called real joint. A group of test samples was subjected to two normalized test procedures that may influence the resulting behavior of the joint in the exterior. The second group of test samples was exposed to the external environment for a particular period. The obtained results of tests show that the standardized methods are able to simulate an outdoor environment, however, only to a certain level. Unfortunately, these methods do not consider the possibility that the sealed or bonded joint might be damaged already during the application itself. While laboratory environment is clean and often dust free, it is not possible to ensure the same conditions in situ. Moreover, in some cases it was monitored that some of the selected sealants tested in an external environment aged rapidly compared to the ones cured and stored in the laboratory. In some cases, the difference between monitored failure modes for indoor and outdoor environment was substantial. The predominant type of sealant failure observed in-situ was adhesive while mainly cohesive failure was monitored in laboratory.


Sign in / Sign up

Export Citation Format

Share Document