scholarly journals Acceleration of Bone Fracture Healing through the Use of Natural Bovine Hydroxyapatite Implant on Bone Defect Animal Model

2019 ◽  
Vol 55 (3) ◽  
pp. 176
Author(s):  
Junaidi Khotib ◽  
Cantika SC Lasandara ◽  
Samirah Samirah ◽  
Aniek S Budiatin

Bone is an important organ for supports the body that stores reserve of calcium, phosphorus, and other minerals. In fracture conditions where bleeding, soft tissue edema, nerve damage, and blood vessels around the bone damage happen, they can cause the mobilization of these minerals in the surrounding tissue. One of the efforts made in the treatment of these fractures is reconnection, in which it works by filling of bone defect with a matrix and administration of anti-infection. Biomaterial filling in defective bone is thought to accelerate the healing process of bone fracture and prevent osteomyelitis. For this reason, this study evaluates the acceleration of bone fracture healing using natural hydroxyapatite (NHA) bone filler in rabbits with bone defect model. Fracture modeling was performed by surgical technique and drilling of bones with a 4.2 mm diameter to form a defect in the rabbit femur. Bone implant contained bovine hydroxyapatite-gelatin-glutaraldehyde (BHA implant) or bovine hydroxyapatite-gelatin-glutaraldehyde-gentamicin (BHA-GEN implant) that was inserted in bone defects. 27 rabbits were divided into 3 groups: the control group who had bone defect, the bone defect group was given BHA implant and the bone defect group was given BHA-GEN implant. Observation of osteoclast, osteoblast, osteocyte, BALP level, and bone morphological integrity was carried out on the 14th, 28th, and 42nd days after surgery. Histological observation of rabbit femur showed a significant difference on the number of osteoclast, osteoblast and osteocyte in all three groups. The BALP level also showed a significant difference in the group given the natural BHA bone implant compared to the control group on day 14 (p = 0.0361). Based on the result of the X-ray, there was also a better integration of rabbit femur bone in groups with the use of BHA or BHA-GEN bone implant. Thus, it can be concluded that the use of a natural BHA implant can accelerate the process of bone repair in the fracture of rabbit femur. In addition, BHA implants were compatible as a matrix for supporting the bone cell growth.

2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Al-Habib MF ◽  
Salman MO ◽  
Faleh FW ◽  
Al-Ani IM

Objective: To study the effect of both laser and ultrasound radiation on bone fracture healing process. Materials and Methods: Nd:YAG laser (1064 nm wavelength, 135 mW power, 16 joules energy) and ultrasound (1 MHz frequency, 50 mW/cm2 power intensity) were used in this work. Fifteen mature, male, albino rats, were divided into three groups and subjected to a partial fracture on the lateral aspect of femur by a sharp blade. The fi rst group of these animals served as control group. The second group was illuminated by the Nd:YAG laser for two minutes; the fi rst dose was given immediately after surgical fracture induction; the other doses were given on days two, three, six and then one dose weekly for the next three weeks while the third group were treated by the addition of the CW ultrasound perpendicular to the laser treatment in the second group. Results: The present study showed that ultrasound increases the penetration of laser power through the tissue. The histological assessments at day 28 after the fracture of fi rst group showed incomplete healing of the bone with disfi guration and disarrangement of Haversian system and the periosteum was not yet well developed. Treatment with laser showed irregularity and lack of Haversian system formation in bone healing of the second group. The laser and ultrasound treated group (third group) expressed a complete healing at the site of fracture with a complete layer of periosteum and a well arranged Haversian system. Conclusion: Combination of laser and ultrasound in therapy can enhance healing process of a fractured bone more than laser therapy alone, as ultrasound increases the depth of laser penetration in tissue.


2021 ◽  
Vol 11 ◽  
Author(s):  
Li Zhang ◽  
Lin Jin ◽  
Jialiang Guo ◽  
Kai Bao ◽  
Jinglue Hu ◽  
...  

The effect of chronic intermittent hypobaric hypoxia (CIHH) on bone fracture healing is not elucidated. The present study aimed to investigate the role of CIHH on bone fracture healing and the mechanism. The Sprague-Dawley rats were randomly divided into the CIHH group and control group and monitored for 2, 4, or 8 weeks after femoral fracture surgery. Bone healing efficiency was significantly increased in the CIHH group as evidenced by higher high-density bone volume fractions, higher bone mineral density, higher maximum force, and higher stiffness. Histologically, the CIHH group exhibited superior bone formation, endochondral ossification, and angiogenic ability compared with the control group. The expression of HIF-1α and its downstream signaling proteins VEGF, SDF-1/CXCR4 axis were increased by the CIHH treatment. Moreover, the expression of RUNX2, osterix, and type I collagen in the callus tissues were also up-regulated in the CIHH group. In conclusion, our study demonstrated that CIHH treatment improves fracture healing, increases bone mineral density, and increases bone strength via the activation of HIF-1α and bone production-related genes.


2021 ◽  
Vol 10 (13) ◽  
pp. 2832
Author(s):  
Lukasz Wozniak ◽  
Wioletta Ratajczak-Wrona ◽  
Jan Borys ◽  
Bozena Antonowicz ◽  
Karolina Nowak ◽  
...  

Background: Nitric oxide is a small gaseous molecule with significant bioactivity. It has been observed that NO may have a dual role dependent on its production and concentrations in the bone microenvironment. The objective of the study was to assess the concentration of total nitric oxide malonyldialdehyde, nitrotyrosine, and asymmetric dimethylarginine in the serum of patients with mandibular fractures and to understand the relationship between these compounds, in order to expand the knowledge base of the role of nitric oxide and its activity indicators in the process of bone fracture healing. Material and Methods: The study included 20 patients with mandibular fractures who were undergoing inpatient and outpatient treatments and a control group of 15 healthy people. Results were analyzed with respect to the measurement time. Total nitric oxide concentration in the blood serum was determined according to the Griess reaction, while the concentration of malonyldialdehyde, nitrotyrosine, and asymmetric dimethylarginine was estimated using the immunoenzymatic method (i.e., enzyme-linked immunosorbent assay). Results: Before the procedure, as well as on the first day and 2 and 6 weeks after the procedure, higher concentrations of total nitric oxide and lower concentrations of malonyldialdehyde were observed in the blood serum of patients with mandibular fractures compared to the control group. No statistically significant differences were found in nitrotyrosine concentrations in the blood serum of patients throughout the measurement period. However, a significantly higher asymmetric dimethylarginine concentration was observed in the patient serum before the procedure and on the first day of operation as compared with the control group. Analysis of the results observed in patient serum with respect to the number of fractures within the mandible demonstrated the same trend of concentrations for the tested compounds for the entire study group. Conclusions: In summary, our results revealed that the intensity of local processes resulting from mandibular fractures is associated with the concentration of nitric oxide, confirming its significant role, as well as that of its indicators, in the process of bone fracture healing in this patient population.


2017 ◽  
Vol 16 (1) ◽  
Author(s):  
May F. Al-Habib ◽  
Imad M. Al-Ani ◽  
Mohammad O. Salman ◽  
Farah W. Faleh

Objective: To study the effect of both laser and ultrasound radiation on bone fracture healing process. Materials and method: Nd:YAG laser (1064 nm wavelength, 135 mW power, 16 joules energy) and ultrasound (1 MHz frequency, 50 mW/cm2 power intensity) were used in this work. Fifteen mature, male, albino rats were divided into three groups and subjected to a partial fracture on the lateral aspect of femur by a sharp blade. The first group of these animals served as the control group. The second group was illuminated by the Nd:YAG laser for two minutes, the first dose was given immediately after surgical fracture induction, the other doses were given on days two, three, six and then one dose weekly for the next three weeks. The third group was treated with the addition of continuous wave ultrasound perpendicular to the laser treatment site in the second group. Results: The histological assessments at day 28 after the fracture of first group showed incomplete healing of the bone with disfiguration and disarrangement of Haversian system and the periosteum was not yet well developed. Treatment with laser in the second group showed irregularity and lack of Haversian system formation in bone healing. The laser and ultrasound treatment in the third group expressed a complete healing at the site of fracture with a complete layer of periosteum and a well arranged Haversian system. Conclusion: The combination of laser and ultrasound in therapy can enhance healing process of a fractured bone more than laser therapy alone, as ultrasound increases the depth of laser penetration in tissue.


Author(s):  
Satoshi Kimura ◽  
Keisuke Oe ◽  
Yohei Kumabe ◽  
Tomoaki Fukui ◽  
Takahiro Niikura ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 358
Author(s):  
Javier Aragoneses ◽  
Ana Suárez ◽  
Nansi López-Valverde ◽  
Francisco Martínez-Martínez ◽  
Juan Manuel Aragoneses

The aim of this study was to evaluate the effect of implant surface treatment with carboxyethylphosphonic acid and fibroblast growth factor 2 on the bone–implant interface during the osseointegration period in vivo using an animal model. The present research was carried out in six minipigs, in whose left tibia implants were inserted as follows: eight implants with a standard surface treatment, for the control group, and eight implants with a surface treatment of carboxyethylphosphonic acid and immobilization of FGF-2, for the test group. At 4 weeks after the insertion of the implants, the animals were sacrificed for the histomorphometric analysis of the samples. The means of the results for the implant–bone contact variable (BIC) were 46.39 ± 17.49% for the test group and 34.00 ± 9.92% for the control group; the difference was not statistically significant. For the corrected implant–bone contact variable (BICc), the mean value of the test group was 60.48 ± 18.11%, and that for the control group, 43.08 ± 10.77%; the difference was statistically significant (p-value = 0.035). The new bone formation (BV/TV) showed average results of 27.28 ± 3.88% for the test group and 26.63 ± 7.90% for the control group, meaning that the differences were not statistically significant (p-value = 0.839). Regarding the bone density at the interthread level (BAI/TA), the mean value of the test group was 32.27 ± 6.70%, and that of the control group was 32.91 ± 7.76%, with a p-value of 0.863, while for the peri-implant density (BAP/TA), the mean value of the test group was 44.96 ± 7.55%, and that for the control group was 44.80 ± 8.68%, without a significant difference between the groups. The current research only found a significant difference for the bone–implant contact at the cortical level; therefore, it could be considered that FGF-2 acts on the mineralization of bone tissue. The application of carboxyethylphosphonic acid on the surface of implants can be considered a promising alternative as a biomimetic coating for the immobilization of FGF-2. Despite no differences in the new bone formation around the implants or in the interthread or peri-implant bone density being detected, the biofunctionalization of the implant surface with FGF-2 accelerates the mineralization of the bone–implant interface at the cortical level, thereby reducing the osseointegration period.


2002 ◽  
Vol 160 (5) ◽  
pp. 1779-1785 ◽  
Author(s):  
Erika Ekholm ◽  
Kurt D. Hankenson ◽  
Hannele Uusitalo ◽  
Ari Hiltunen ◽  
Humphrey Gardner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document