scholarly journals Aplikasi Limbah Padat Karet Remah Pada Tanah Podsolik Merah Kuning Terhadap Ketersediaan Hara Makro Dan Perbaikan Sifat Fisika Tanah

2021 ◽  
Vol 16 (2) ◽  
pp. 264
Author(s):  
Muhammad Helmy Abdillah ◽  
Muhammad Aldi

The chemical properties of Podsolic Red-Yellow soil have pH is very acidic to slightly acidic, low to moderate percentage of C-organic, low to moderate P, and low status of K, Ca, Mg, Na, and other saturation of bases. Also, the physical characteristics of the Red-Yellow Podsolic soil show a distinctive characteristic, as bulk density soil index of 1.30 - 1.50 g.cm-3, with low water absorption. The chemical and physical properties are bad enough to make Red-Yellow Podsolic soil have a low ability to provide macronutrients needed by plants. Organic matter is proven to be able to control nutrient availability in mineral soils. The potentials for organic material that has been completely decomposed is crumb rubber solid waste. The use of crumb rubber solid waste material as organic material is expected to be able to influence the availability of macronutrients and improve the physical characteristics of the Podsolic Red-Yellow soil. This study aims to find differences in the availability of NH4+ NO3-, H2PO4-, K-exchangeable, C-organic and to compare the treatments that produce the best index of soil bulk density, increase the percentage of water content, and determine the soil temperature of Red-Yellow Podsolic with the application of crumb rubber solid waste with difference level, statistical test with through the index of mean difference Tukey’s test on level α 5%. In this research it was concluded that the application of crumb rubber solid waste could increase soil pH, provide levels of NH4+, NO3-, H2PO4, K-exchangeable, C-organic and reduce soil bulk density index, increase water content and soil temperature compared to not using crumb rubber solid waste. PCr3 treatment showed the highest yield at pH, NH4+, H2PO4, C-organic and increased water content, but it was not significantly different than PCr2 treatment, whereas PCr2 was significantly different from PCr3 in providing NO3-, K-exchangeable.

Author(s):  
Muhammad Helmy Abdillah

Demand for crumb rubber and block rubber from abroad to increase thus encouraging crumb rubber agro industry factories in Indonesia to increase of the production, but this is not matched by environmental quality that should be increasingly considered. Pollution that appears to be seen in the form of changes in the color of water and solid material from the washing of latex crumbs as sludge which leaves a damaged latex, mixed with wood and other inorganic materials. In the process of handling liquid waste in Waste Water Treatment Plant (WWTP) ponds, liquid waste can be recycled so that it can be reused to wash lumps and latex crumbs, but solid waste in the form of activated sludge at the bottom of the WWTP ponds containing damaged rubber with inorganic materials has become a polluter in the factor. In this research, the characteristics of the solid waste are analyzed to be used as soil amendment material of determining the appropriate length of incubation different, so that the waste is indeed feasible as soil amendment. This research was conducted at August 2019 to February 2020 with compare the results of the three treatment levels for the incubation period of solid waste with code T1 = 60 days after being removed from the WWTP pond; T2 = 120 days after being removed from the WWTP ponds; T3 = 180 days after being removed from the WWTP ponds, which was four repeated. Method in parametric research as temperature with mercury thermometer, color of waste compare with Munsell's soil, texture of material with skin sensing method, particle size with 1 inch sieve, moisture content with gravimatric method, and bulk density with sample ring method, as well as chemical properties of solid waste with observational variables i.e. pH (H2O) is measured with digital pH meter, Fe-total with the ortho-phenanthroline spectrophotometry method, Lead (Pb) b with the spectrophotometric HNO3 method, C-organic with the Walkley-Black spectrophotometric method, N-total with the Kjeldahl’s method, P2O5 with the Olsen’s spectrophotometric method, C-organic with the Walkley-Black’s spectrophotometric method, K2O with Morgan’s spectrophotometry method, and C / N ratio with dividing the index C of N. The best treatment is based on the approach required by SNI 19-7030-2004 and the Decree of the Minister of Agriculture No. 261 / KPTS / SR.310 / M / 4/2019. From the results of this study it was concluded that the solid waste in the T2 treatment was the best treatment that has physical properties with a temperature character of 28.6 °C, a blackish gray color with an index of 5BG 4/1, a fine textured soft lumpy, with particle size <25 mm, content water (8.7%) and bulk density (0.81 g.cm-3), as well as chemical properties with a pH of 7.02; Fe-total (0.00104 ppm); Lead (Pb) <0.01 ppm; C-organic (11.21%); N-total (1.37%); P2O5 (1.33%); K2O (0.56%) and C / N ratio of 8.18.


2012 ◽  
Vol 610-613 ◽  
pp. 2937-2943 ◽  
Author(s):  
Hui Jun Liu ◽  
Jing Hui Liu ◽  
Jian Yu ◽  
Sheng Tao Xu

The effect of different soil amendment (potassium polyacrylate; polyacrylamide;potassium humate; potassium polyacrylate+ potassium humate; polyacrylamide+ potassium humate) on soil physical and chemical properties in oat field was studied. The results showed that different soil amendments increase significantly the soil organic matter, available N, available P and available K content by 8.24%-30.22%, 7.60%-19.29%, 5.15%-29.45% and 27.86%-68.86% respectively. Soil water content at 0-60 cm depth is higher with soil amendment. But soil amendment has no effect on the soil water content at 60-100 cm soil depth. At the same time, soil amendments reduce the soil bulk density at 0-10 cm,10-20 cm, 20-40 cm and 40-60 cm depths, and they produce no obvious effect on soil bulk density at 60-100 cm depth. The proportion of > 0.25 mm soil aggregate at 0-10 cm,10-20 cm and 20-40 cm depth is increased significantly by applying soil amendment. Among five aggregate sizes (> 2 mm; 2-1 mm; 1-0.5 mm; 0.5-0.25 mm; 2 mm and 2-1 mm soil aggregates are the most. In conclusion, the mixing use of two kinds of soil amendments(potassium polyacrylate+ potassium humate and polyacrylamide+ potassium humate) is more effective for improving soil physical and chemical properties.


2021 ◽  
pp. 126389
Author(s):  
Marco Bittelli ◽  
Fausto Tomei ◽  
Anbazhagan P. ◽  
Raghuveer Rao Pallapati ◽  
Puskar Mahajan ◽  
...  

2019 ◽  
Vol 15 (No. 1) ◽  
pp. 47-54 ◽  
Author(s):  
Mxolisi Mtyobile ◽  
Lindah Muzangwa ◽  
Pearson Nyari Stephano Mnkeni

The effects of tillage and crop rotation on the soil carbon, the soil bulk density, the porosity and the soil water content were evaluated during the 6<sup>th</sup> season of an on-going field trial at the University of Fort Hare Farm (UFH), South Africa. Two tillage systems; conventional tillage (CT) and no-till and crop rotations; maize (Zea mays L.)-fallow-maize (MFM), maize-fallow-soybean (Glycine max L.) (MFS); maize-wheat (Triticum aestivum L.)-maize (MWM) and  maize-wheat-soybean (MWS) were evaluated. The field experiment was a 2 × 4 factorial, laid out in a randomised complete design. The crop residues were retained for the no-till plots and incorporated for the CT plots, after each cropping season. No significant effects (P &gt; 0.05) of the tillage and crop rotation on the bulk density were observed. However, the values ranged from 1.32 to1.37 g/cm<sup>3</sup>. Significant interaction effects of the tillage and crop rotation were observed on the soil porosity (P &lt; 0.01) and the soil water content (P &lt; 0.05). The porosity for the MFM and the MWS, was higher under the CT whereas for the MWM and the MWS, it was higher under the no-till. However, the greatest porosity was under the MWS. Whilst the no-till significantly increased (P &lt; 0.05) the soil water content compared to the CT; the greatest soil water content was observed when the no-till was combined with the MWM rotations. The soil organic carbon (SOC) was increased more (P &lt; 0.05) by the no-till than the CT, and the MFM consistently had the least SOC compared with the rest of the crop rotations, at all the sampling depths (0–5, 5–10 and 10–20 cm). The soil bulk density negatively correlated with the soil porosity and the soil water content, whereas the porosity positively correlated with the soil water content. The study concluded that the crop rotations, the MWM and the MWS under the no-till coupled with the residue retention improved the soil porosity and the soil water content levels the most.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1005 ◽  
Author(s):  
Lucia Toková ◽  
Dušan Igaz ◽  
Ján Horák ◽  
Elena Aydin

Due to climate change the productive agricultural sectors have started to face various challenges, such as soil drought. Biochar is studied as a promising soil amendment. We studied the effect of a former biochar application (in 2014) and re-application (in 2018) on bulk density, porosity, saturated hydraulic conductivity, soil water content and selected soil water constants at the experimental site in Dolná Malanta (Slovakia) in 2019. Biochar was applied and re-applied at the rates of 0, 10 and 20 t ha−1. Nitrogen fertilizer was applied annually at application levels N0, N1 and N2. In 2019, these levels were represented by the doses of 0, 108 and 162 kg N ha−1, respectively. We found that biochar applied at 20 t ha−1 without fertilizer significantly reduced bulk density by 12% and increased porosity by 12%. During the dry period, a relative increase in soil water content was observed at all biochar treatments—the largest after re-application of biochar at a dose of 20 t ha−1 at all fertilization levels. The biochar application also significantly increased plant available water. We suppose that change in the soil structure following a biochar amendment was one of the main reasons of our observations.


2020 ◽  
Vol 21 (8) ◽  
Author(s):  
Muhammad Fajri ◽  
Pratiwi PRATIWI ◽  
Yosep Ruslim

Abstract. Fajri M, Pratiwi, Ruslim Y. 2020. The characteristics of Shorea macrophylla’s habitat in Tane’ Olen, Malinau District, North Kalimantan Province, Indonesia. Biodiversitas 21: 3454-3462.  Shorea macrophylla is a tree species in Tane' Olen forest area. This study analyzed the soil’s physical and chemical properties, topography, and microclimate of S. macrophylla’s habitat. A purposive method was used to select a sampling plot and to place the subplots. Soil was analyzed to determine the physical properties, i.e., texture, bulk density, porosity, and water content, and the chemical properties, i.e., pH, CEC, total N, organic C, C/N ratio, P, K , and Al saturation. Importance value index was determined for each tree species to know the species composition in the study site. Only the dominant species were presented. The soil at the study site had bulk density of 0.60-1.31 gram cm³-1, porosity 50.60%-77.35%, water content 34.88%-95.37%, and soil texture sandy clay. The chemical properties of the soil were as follows: pH was 3.6-4.8, N 0.05%-0.19%, organic C 1.40%-3.65%, P 0.41-1.22 mg 100 gr-1, K 58.68-232.55 mg 100 gr-1, and Cation Exchange Capacity (CEC) 5.35-10.81 meg 100gr -1. Slope ranged between 0 and 25%. The microclimate characteristics were as follows: temperature was 24-26.5°C, relative humidity 76-87%, and light intensity 145-750 Lm. Trees species with an IVI ≥ 10% were S. macrophylla, Madhuca spectabilis, Myristica villosa Warb, Scorodocarpus borneensis, Eugenia spp., Palaquium spp., Macaranga triloba, Syzygium inophyllum and Shorea sp. Positive associations were observed between S. macropylla and S. borneensis, Eugenia spp., Palaquium spp.. and M. triloba, and negative associations were observed between S. macropylla and M. spectabilis, M. villosa Warb, S. inophyllum, and Shorea sp. S. macrophylla grows on riversides with flat and gentle topography, acidic soil, and lower fertility but with suitable microclimate. This species can be recommended to be planted in degraded tropical forest areas but the microclimate and soil properties should be taken into account.


2004 ◽  
Vol 84 (4) ◽  
pp. 431-438 ◽  
Author(s):  
Q. Huang ◽  
O. O. Akinremi ◽  
R. Sri Rajan ◽  
P. Bullock

Accurate in situ determination of soil water content is important in many fields of agricultural, environmental, hydrological, and engineering sciences. As numerous soil water content sensors are available on the market today, the knowledge of their performance will aid users in the selection of appropriate sensors. The objectives of this study were to evaluate five soil water sensors in the laboratory and to determine if laboratory calibration is appropriate for the field. In this study, the performances of five sensors, including the Profile Probe™ (PP), ThetaProbe™ , Watermark™, Aqua-Tel™, and Aquaterr™ were compared in the laboratory. The PP and ThetaProbe™ were more accurate than the other soil water sensors, reproducing soil water content using factory recommended parameters. However, when PP was installed on a loamy sand in the field, the same soil that was used for the laboratory evaluation, it overestimated field soil water, especially at depth. Another laboratory experiment showed that soil water content readings from the PP were strongly influenced by soil bulk density. The higher the soil bulk density, the greater was the overestimation of soil water content. Two regression parameters, a0 and a1, which are used to convert the apparent dielectric constant to volumetric water content, were found to increase linearly with the soil bulk density in the range of 1.2 to 1.6 Mg m-3. Finally, the PP was calibrated in the field and a good calibration function was obtained with an r2 of 0.87 and RMSE of 2.7%. The values of a0 and a1 obtained in the field were different from factory recommended parameters (a0 = 2.4 versus 1.6 while a1 = 12.5 versus 8.4) and were independent of soil depth, bulk density, and texture. As such, individual field calibration will be necessary to obtain precise and accurate measurement of soil water content with this instrument. Key words: Soil water content, Profile Probe, calibration, soil water content sensor


2016 ◽  
Vol 20 (9) ◽  
pp. 3859-3872 ◽  
Author(s):  
William Alexander Avery ◽  
Catherine Finkenbiner ◽  
Trenton E. Franz ◽  
Tiejun Wang ◽  
Anthony L. Nguy-Robertson ◽  
...  

Abstract. The need for accurate, real-time, reliable, and multi-scale soil water content (SWC) monitoring is critical for a multitude of scientific disciplines trying to understand and predict the Earth's terrestrial energy, water, and nutrient cycles. One promising technique to help meet this demand is fixed and roving cosmic-ray neutron probes (CRNPs). However, the relationship between observed low-energy neutrons and SWC is affected by local soil and vegetation calibration parameters. This effect may be accounted for by a calibration equation based on local soil type and the amount of vegetation. However, determining the calibration parameters for this equation is labor- and time-intensive, thus limiting the full potential of the roving CRNP in large surveys and long transects, or its use in novel environments. In this work, our objective is to develop and test the accuracy of globally available datasets (clay weight percent, soil bulk density, and soil organic carbon) to support the operability of the roving CRNP. Here, we develop a 1 km product of soil lattice water over the continental United States (CONUS) using a database of in situ calibration samples and globally available soil taxonomy and soil texture data. We then test the accuracy of the global dataset in the CONUS using comparisons from 61 in situ samples of clay percent (RMSE  =  5.45 wt %, R2  =  0.68), soil bulk density (RMSE  =  0.173 g cm−3, R2  =  0.203), and soil organic carbon (RMSE  =  1.47 wt %, R2  =  0.175). Next, we conduct an uncertainty analysis of the global soil calibration parameters using a Monte Carlo error propagation analysis (maximum RMSE  ∼  0.035 cm3 cm−3 at a SWC  =  0.40 cm3 cm−3). In terms of vegetation, fast-growing crops (i.e., maize and soybeans), grasslands, and forests contribute to the CRNP signal primarily through the water within their biomass and this signal must be accounted for accurate estimation of SWC. We estimated the biomass water signal by using a vegetation index derived from MODIS imagery as a proxy for standing wet biomass (RMSE  <  1 kg m−2). Lastly, we make recommendations on the design and validation of future roving CRNP experiments.


Sign in / Sign up

Export Citation Format

Share Document