scholarly journals Qualitative Analysis of the Dynamics of a Trailed Wheeled Vehicle with Periodic Excitation

2021 ◽  
Vol 17 (4) ◽  
pp. 437-451
Author(s):  
E. A. Mikishanina ◽  

This article examines the dynamics of the movement of a wheeled vehicle consisting of two links (trolleys). The trolleys are articulated by a frame. One wheel pair is fixed on each link. Periodic excitation is created in the system due to the movement of a pair of masses along the axis of the first trolley. The center of mass of the second link coincides with the geometric center of the wheelset. The center of mass of the first link can be shifted along the axis relative to the geometric center of the wheelset. The movement of point masses does not change the center of mass of the trolley itself. Based on the joint solution of the Lagrange equations of motion with undetermined multipliers and time derivatives of nonholonomic coupling equations, a reduced system of differential equations is obtained, which is generally nonautonomous. A qualitative analysis of the dynamics of the system is carried out in the absence of periodic excitation and in the presence of periodic excitation. The article proves the boundedness of the solutions of the system under study, which gives the boundedness of the linear and angular velocities of the driving link of the articulated wheeled vehicle. Based on the numerical solution of the equations of motion, graphs of the desired mechanical parameters and the trajectory of motion are constructed. In the case of an unbiased center of mass, the solutions of the system can be periodic, quasi-periodic and asymptotic. In the case of a displaced center of mass, the system has asymptotic dynamics and the mobile transport system goes into rectilinear uniform motion.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soon Ho Kim ◽  
Jong Won Kim ◽  
Hyun Chae Chung ◽  
MooYoung Choi

AbstractThe principle of least effort has been widely used to explain phenomena related to human behavior ranging from topics in language to those in social systems. It has precedence in the principle of least action from the Lagrangian formulation of classical mechanics. In this study, we present a model for interceptive human walking based on the least action principle. Taking inspiration from Lagrangian mechanics, a Lagrangian is defined as effort minus security, with two different specific mathematical forms. The resulting Euler–Lagrange equations are then solved to obtain the equations of motion. The model is validated using experimental data from a virtual reality crossing simulation with human participants. We thus conclude that the least action principle provides a useful tool in the study of interceptive walking.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Vivian Martins Gomes ◽  
Antonio Fernando Bertachini de Almeida Prado ◽  
Justyna Golebiewska

The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.


2020 ◽  
Vol 4 (3) ◽  
pp. 141-150
Author(s):  
R. M. Khabibullin ◽  
O. L. Starinova

The paper is devoted to the non-coplanar interplanetary Earth–Venus flight of a spacecraft equipped with a non-perfectly reflecting solar sail, the magnitude and direction of acceleration from which is calculated taking into account specular and diffuse reflections, absorption and transmission of photons by the surface of the solar sail. The goal of the heliocentric motion is to transfer the solar sail spacecraft into the Hill sphere of Venus with zero hyperbolic excess of speed. A feature of the paper is the study of the motion of a non-perfectly reflecting solar sail spacecraft taking into account the motion relative to the center of mass. The problem is divided into three stages. At the first stage, a nominal program for controlling the motion of the spacecraft center of mass is formed. At the second stage, sufficient angular velocities are determined to ensure the obtained nominal control program and the parameters of the spacecraft controls – thin-film controls located along the perimeter of the solar sail – are calculated. The operating principle of the thin-film controls is quite simple. When the voltage applied to the thin-film controls changes, they become transparent or opaque, there is a difference in the normal components of the light pressure forces, which provides a control torque for changing the orientation of the spacecraft in space. At the third stage, the joint motion of the center of mass and relative to the center of mass of the spacecraft is simulated to demonstrate the feasibility of the obtained control program. As a result, a comparison is made of non-coplanar interplanetary Earth–Venus flights with and without thin-film control elements.


1955 ◽  
Vol 22 (2) ◽  
pp. 207-214
Author(s):  
David Sinclair

Abstract Frictional vibrations, such as stick-slip motion and automobile-brake squeal, which occur when two solid bodies are rubbed together, are analyzed mathematically and observed experimentally. The conditions studied are slow uniform motion and relatively rapid simple harmonic motion of brake lining over a cast-iron base. The equations of motion show and the observations confirm that frictional vibrations are caused primarily by an inverse variation of coefficient of friction with sliding velocity, but their form and occurrence are greatly dependent upon the dynamical constants of the mechanical system. With a constant coefficient of friction, the vibration initiated whenever sliding begins is rapidly damped out, not by the friction but by the “natural” damping of all mechanical systems. The coefficient of friction of most brake linings and other organic materials was essentially invariant with velocity, except that the static coefficient was usually greater than the sliding coefficient. Most such materials usually showed a small decrease in coefficient with increasing temperature. The persistent vibrations resulting from the excess static friction were reduced or eliminated by treating the rubbing surfaces with polar organic compounds which produced a rising friction characteristic.


2021 ◽  
pp. 24-34
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

The purpose of this chapter is to recall the principles of Lagrangian and Hamiltonian classical mechanics. Many results are presented without detailed proofs. We obtain the Euler–Lagrange equations of motion, and show the equivalence with Hamilton’s equations. We derive Noether’s theorem and show the connection between symmetries and conservation laws. These principles are extended to a system with an infinite number of degrees of freedom, i.e. a classical field theory. The invariance under a Lie group of transformations implies the existence of conserved currents. The corresponding charges generate, through the Poisson brackets, the infinitesimal transformations of the fields as well as the Lie algebra of the group.


1995 ◽  
Vol 117 (3) ◽  
pp. 446-453 ◽  
Author(s):  
S. Yoon ◽  
R. M. Howe ◽  
D. T. Greenwood

When Baumgarte’s Constraint Violation Stabilization Method (CVSM) is used in the simulation of Lagrange equations of motion with holonomic constraints, it is shown that, with suitable assumptions on the integration step size h and the eigenvalues (λ’s) of the linearized system, the constraint variables are effectively integrated by the same algorithm as that used for the state variables. A numerical stability analysis of the constraint violations can be performed using this so-called pseudo-integration equation. A study is also made of truncation errors and their modeling in the continuous time domain. This model can be used to determine the effectiveness of various constraint controls and integration methods in reducing the errors in the solution due to truncation errors. Examples are presented to illustrate the use of a higher-order truncation error model which leads to an accurate quantitative steady-state analysis of the constraint violations.


1963 ◽  
Vol 41 (12) ◽  
pp. 2241-2251 ◽  
Author(s):  
M. G. Calkin

The equations of motion of an inviscid, infinitely conducting fluid in an electromagnetic field are transformed into a form suitable for an action principle. An action principle from which these equations may be derived is found. The conservation laws follow from invariance properties of the action. The space–time invariances lead to the conservation of momentum, energy, angular momentum, and center of mass, while the gauge invariances lead to conservation of mass, a generalization of the Helmholtz vortex theorem of hydrodyanmics, and the conservation of the volume integrals of A∙B and v∙B, where A is the vector potential, B is the magnetic induction, and v is the fluid velocity.


2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Matthew H. Jones ◽  
Steven A. Velinsky ◽  
Ty A. Lasky

This paper develops the dynamic equations of motion for the planetary roller screw mechanism (PRSM) accounting for the screw, rollers, and nut bodies. First, the linear and angular velocities and accelerations of the components are derived. Then, their angular momentums are presented. Next, the slip velocities at the contacts are derived in order to determine the direction of the forces of friction. The equations of motion are derived through the use of Lagrange's Method with viscous friction. The steady-state angular velocities and screw/roller slip velocities are also derived. An example demonstrates the magnitude of the slip velocity of the PRSM as a function of both the screw lead and the screw and nut contact angles. By allowing full dynamic simulation, the developed analysis can be used for much improved PRSM system design.


2016 ◽  
Vol 13 (07) ◽  
pp. 1650095
Author(s):  
Zeki Kasap

Twistor spaces are certain complex three-manifolds, which are associated with special conformal Riemannian geometries on four-manifolds. Also, classical mechanic is one of the major subfields for mechanics of dynamical system. A dynamical system has a state determined by a collection of real numbers, or more generally by a set of points in an appropriate state space for classical mechanic. Euler–Lagrange equations are an efficient use of classical mechanics to solve problems using mathematical modeling. On the other hand, Weyl submitted a metric with a conformal transformation for unified theory of classical mechanic. This paper aims to introduce Euler–Lagrage partial differential equations (mathematical modeling, the equations of motion according to the time) for the movement of objects on twistor space and also to offer a general solution of differential equation system using the Maple software. Additionally, the implicit solution of the equation will be obtained as a result of a special selection of graphics to be drawn.


Sign in / Sign up

Export Citation Format

Share Document