scholarly journals Performance of rabi Sorghum Genotypes (Sorghum bicolor (L) Moench) to Varied Soil Moisture Regimes

Author(s):  
Gangadasari Sravana Lakshmi ◽  
B. N. Aravind Kumar ◽  
N. G. Hanamaratti ◽  
V. S. Kubsad
1996 ◽  
Vol 76 (1) ◽  
pp. 123-125 ◽  
Author(s):  
W. P. McCaughey ◽  
M. C. Therrien ◽  
R. Mabon

After a series of hot, dry years in the late 1980s a study was conducted to assess the suitability and yield stability of forage sorghum (Sorghum bicolor L. Moench.) in southern Manitoba. The effects of genotype and environment on DM yield of seven forage sorghum genotypes were evaluated (1990–1992) in six different environments. Genotype, environment and genotype × environment accounted for 3.9% (P < 0.0001), 84.8% (P < 0.0001) and 3.3% (P < 0.001) of the total variation in DM yield, respectively. The fact that environment accounted for most of the variability in DM yield and that relative rankings of varieties differed across environments indicated that yield was unstable. Forage sorghum produced acceptable DM yield only in years which were warmer (> 2700 CHU) than average (2200–2600 CHU) for southern Manitoba. Forage sorghum is not recommended for southern Manitoba unless the climate warms to where 2700 CHU are consistently accumulated during the growing season. Key words: Forage, sorghum, sorghum-sudangrass, C4, temperature, yield


2020 ◽  
Vol 8 (2) ◽  
pp. 347
Author(s):  
Farastika Unjunan Muli ◽  
Efri Efri ◽  
Muhammad Syamsoel Hadi ◽  
Radix Suharjo

One of the diseases that often found in sorghum plants is anthracnose disease caused by Colletotrichum sp. The purposed of this study was to determine the effect of adding micro fertilizer and the use of several sorghum genotypes on the intensity of anthracnose disease. The study was conducted in Sukanegara, Tanjung Bintang, South Lampung in April 2017 - February 2018 and at the Laboratory of Plant Diseases and Pests, Faculty of Agriculture, University of Lampung. The treatments were arranged using a randomized block design in a split plot design (3 times replications), the main plot was micro nutrients (with micro addition and without micro addition) and 15 subgroups of sorghum genotypes (Numbu, Samurai 1, GH3, UPCA, GH4, P / I WHP, GH6, Super 2, GH13, P / F 51-93-C, Super 1, GH5, Mandau, GH7, and Talaga Bodas). The results showed that the addition of "ZincMicro" micro fertilizers to sorghum plants did not affect the intensity of anthracnose disease, however there were differences in the intensity of anthracnose diseases between sorghum genotypes. Numbu Genotype, GH 3, and GH 13 were relatively more resistant to anthracnose disease than the other genotypes.


PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0140620 ◽  
Author(s):  
Fei Zhang ◽  
Jialin Yu ◽  
Christopher R. Johnston ◽  
Yanqiu Wang ◽  
Kai Zhu ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Moses Owuor Oyier ◽  
James O. Owuoche ◽  
Maurice E. Oyoo ◽  
Erick Cheruiyot ◽  
Betty Mulianga ◽  
...  

Harvesting stage of sweet sorghum (Sorghum bicolor L. Moench) cane is an important aspect in the content of sugar for production of industrial alcohol. Four sweet sorghum genotypes were evaluated for harvesting stage in a randomized complete block design. In order to determine sorghum harvest growth stage for bioethanol production, sorghum canes were harvested at intervals of seven days after anthesis. The genotypes were evaluated at different stages of development for maximum production of bioethanol from flowering to physiological maturity. The canes were crushed and juice fermented to produce ethanol. Measurements of chlorophyll were taken at various stages as well as panicles from the harvested canes. Dried kernels at 14% moisture content were also weighed at various stages. Chlorophyll, grain weight, absolute ethanol volume, juice volume, cane yield, and brix showed significant (p=0.05) differences for genotypes as well as the stages of harvesting. Results from this study showed that harvesting sweet sorghum at stages IV and V (104 to 117 days after planting) would be appropriate for production of kernels and ethanol. EUSS10 has the highest ethanol potential (1062.78 l ha−1) due to excellent juice volume (22976.9 l ha−1) and EUSS11 (985.26 l ha−1) due to its high brix (16.21).


Sign in / Sign up

Export Citation Format

Share Document