scholarly journals In vitro Antimycobacterial Activity of Selected Medicinal Plants against Mycobacterium tuberculosis

Author(s):  
Kpatcha E. Poro Yao Hoekou ◽  
Passimna Pissang Iwaba Kpabi ◽  
Kosi M. Novidzro Anoumou Y. Dagnra ◽  
Tchadjobo Tchacondo Komlan Batawila
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Poushali Chakraborty ◽  
Sapna Bajeli ◽  
Deepak Kaushal ◽  
Bishan Dass Radotra ◽  
Ashwani Kumar

AbstractTuberculosis is a chronic disease that displays several features commonly associated with biofilm-associated infections: immune system evasion, antibiotic treatment failures, and recurrence of infection. However, although Mycobacterium tuberculosis (Mtb) can form cellulose-containing biofilms in vitro, it remains unclear whether biofilms are formed during infection in vivo. Here, we demonstrate the formation of Mtb biofilms in animal models of infection and in patients, and that biofilm formation can contribute to drug tolerance. First, we show that cellulose is also a structural component of the extracellular matrix of in vitro biofilms of fast and slow-growing nontuberculous mycobacteria. Then, we use cellulose as a biomarker to detect Mtb biofilms in the lungs of experimentally infected mice and non-human primates, as well as in lung tissue sections obtained from patients with tuberculosis. Mtb strains defective in biofilm formation are attenuated for survival in mice, suggesting that biofilms protect bacilli from the host immune system. Furthermore, the administration of nebulized cellulase enhances the antimycobacterial activity of isoniazid and rifampicin in infected mice, supporting a role for biofilms in phenotypic drug tolerance. Our findings thus indicate that Mtb biofilms are relevant to human tuberculosis.


2021 ◽  
Vol 16 (7) ◽  
pp. 15-22
Author(s):  
Paul Giftson ◽  
Jerrine Joseph ◽  
Revathy Kalyanasundaram ◽  
V. Ramesh Kumar ◽  
Wilson Aruni

Tuberculosis (TB) is a communicable disease and remains one of the top 10 causes of death worldwide. One fourth of the world population is infected with TB at a risk of developing disease. The increase in the incidence of drug resistant TB around the world urges the need to develop a new candidate to fight against the disease. Plants were considered as the rich source of bioactive components to be used as potential drugs. Medicinal plants are used in pure as well as crude materials for their medicinal properties. Our research aims in identifying the phyto-molecules which have anti- tuberculosis property. Four medicinal plants namely, Acalyphaciliata (Kuppaimeni), Solanumtrilobatum (Thuthuvalai), Momordicacharantia (Bitter Gourd) and Sennaauriculata (Avaram) were chosen to evaluate their antimicrobial activity focusing on anti-tubercular activity. The methanol extracts of the medicinal plants showed significant inhibitory activity against bacterial and fungal pathogens. Sennaauriculata methanol extracts showed activity against S. aureus, E. coli, P. aeruginosa and C. albicans. In the screening of antimycobacterial activity done by LRP assay, among the plant extracts tested, the hexane crude extracts of Momordicacharantia (Bitter Gourd) showed 82.2% and 81.03% of inhibition against M. tuberculosis H37Rv at 500µg/ml and 250µg/ml concentration respectively. Similarly, the methanol crude extracts of Momordicacharantia showed 87.14% and 63.55% of inhibition at 500µg/ml and 250µg/ml concentration respectively.


2010 ◽  
Vol 59 (5) ◽  
pp. 567-572 ◽  
Author(s):  
Fa Ge ◽  
Fanli Zeng ◽  
Siguo Liu ◽  
Na Guo ◽  
Haiqing Ye ◽  
...  

Reports have shown that oleanolic acid (OA), a triterpenoid, exists widely in food, medicinal herbs and other plants, and that it has antimycobacterial activity against the Mycobacterium tuberculosis strain H37Rv (ATCC 27294). In this study it was found that OA had antimycobacterial properties against eight clinical isolates of M. tuberculosis and that the MICs of OA against drug-sensitive and drug-resistant isolates were 50–100 and 100–200 μg ml−1, respectively. The combination of OA with isoniazid (INH), rifampicin (RMP) or ethambutol (EMB) showed favourable synergistic antimycobacterial effects against six drug-resistant strains, with fractional inhibitory concentration indices of 0.121–0.347, 0.113–0.168 and 0.093–0.266, respectively. The combination treatments of OA/INH, OA/RMP and OA/EMB displayed either a synergistic interaction or did not show any interaction against two drug-sensitive strains. No antagonism resulting from the OA/INH, OA/RMP or OA/EMB combination was observed for any of the strains tested. OA exhibited a relatively low cytotoxicity in Vero cells. These results indicate that OA may serve as a promising lead compound for future antimycobacterial drug development.


2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Seong Won Choi ◽  
Yuexi Gu ◽  
Ryan Scott Peters ◽  
Padmini Salgame ◽  
Jerrold J. Ellner ◽  
...  

ABSTRACT Host-directed therapy in tuberculosis is a potential adjunct to antibiotic chemotherapy directed at Mycobacterium tuberculosis. Ambroxol, a lead compound, emerged from a screen for autophagy-inducing drugs. At clinically relevant doses, ambroxol induced autophagy in vitro and in vivo and promoted mycobacterial killing in macrophages. Ambroxol also potentiated rifampin activity in a murine tuberculosis model.


2015 ◽  
Vol 59 (8) ◽  
pp. 4446-4452 ◽  
Author(s):  
Vadim Makarov ◽  
João Neres ◽  
Ruben C. Hartkoorn ◽  
Olga B. Ryabova ◽  
Elena Kazakova ◽  
...  

ABSTRACT8-Nitro-benzothiazinones (BTZs), such as BTZ043 and PBTZ169, inhibit decaprenylphosphoryl-β-d-ribose 2′-oxidase (DprE1) and display nanomolar bactericidal activity againstMycobacterium tuberculosisin vitro. Structure-activity relationship (SAR) studies revealed the 8-nitro group of the BTZ scaffold to be crucial for the mechanism of action, which involves formation of a semimercaptal bond with Cys387 in the active site of DprE1. To date, substitution of the 8-nitro group has led to extensive loss of antimycobacterial activity. Here, we report the synthesis and characterization of the pyrrole-benzothiazinones PyrBTZ01 and PyrBTZ02, non-nitro-benzothiazinones that retain significant antimycobacterial activity, with MICs of 0.16 μg/ml againstM. tuberculosis. These compounds inhibit DprE1 with 50% inhibitory concentration (IC50) values of <8 μM and present favorablein vitroabsorption-distribution-metabolism-excretion/toxicity (ADME/T) andin vivopharmacokinetic profiles. The most promising compound, PyrBTZ01, did not show efficacy in a mouse model of acute tuberculosis, suggesting that BTZ-mediated killing through DprE1 inhibition requires a combination of both covalent bond formation and compound potency.


2004 ◽  
Vol 72 (1) ◽  
pp. 43-49 ◽  
Author(s):  
K. Waisser ◽  
K. Dražková ◽  
J. Čižmárik ◽  
J. Kaustová

A series of 14 hydrochlorides of piperidinylethyl esters of orthosubstituted phenylcarbamic acids were evaluated for in vitro antimycobacterial activity against the strains of Mycobacterium tuberculosis, Mycobactenum kansasii and Mycobactenum avium. In vitro antimycobacterial activrty becomes higher with increasing hydrophobicity of the substituents. The alkoxy group is not necessary in order for the basic ethyl esters of phenylcarbamic acids to display antimycobacterial activity.


2011 ◽  
Vol 65 (1) ◽  
Author(s):  
Eva Petrlíková ◽  
Karel Waisser ◽  
Karel Palát ◽  
Jiří Kuneš ◽  
Jarmila Kaustová

AbstractAs a part of our systematic study of antimycobacterially active derivatives of salicylamides, a series of nineteen derivatives of N-(2-pyridylmethyl)salicylamides and N-(3-pyridylmethyl)salicylamides was synthesised. The compounds exhibited in vitro activity against Mycobacterium tuberculosis and M. avium. Their lipophilicity, R M, was measured by thin layer chromatography on silica gel impregnated with trioctadecylsilane and the logarithm of the partition coefficient (octanol-water), logP, was calculated. Both the parameters of lipophilicity correlated. The quantitative relationship between the structure and antimycobacterial activity was calculated. Antimycobacterial activity increased with an increase in lipophilicity. The N-(2-pyridylmethyl)salicylamide derivatives were more active than the derivatives of isomeric N-(3-pyridylmethyl)salicylamides. The geometry of compounds was calculated and the calculation was verified by measuring the length of the hydrogen bond between hydroxyl and carbonyl groups on the salicylic moiety.


2010 ◽  
Vol 56 (6) ◽  
pp. 487-494 ◽  
Author(s):  
Duncan Webster ◽  
Timothy D.G. Lee ◽  
Jill Moore ◽  
Tracy Manning ◽  
Dennis Kunimoto ◽  
...  

Multidrug-resistant Mycobacterium tuberculosis strains have rapidly become a global health concern. North American First Nations communities have used traditional medicines for generations to treat many pulmonary infections. In this study, we evaluated the antimycobacterial activity of 5 medicinal plants traditionally used as general therapeutics for pulmonary illnesses and specifically as treatments for tuberculosis. Aqueous extracts of Aralia nudicaulis , Symplocarpus foetidus , Heracleum maximum , Juniperus communis, and Acorus calamus were screened for antimycobacterial activity against Bacillus Calmette–Guérin, Mycobacterium avium, and M. tuberculosis H37Ra using the colorimetric microplate resazurin assay. Extracts of Acorus calamus and H. maximum root demonstrated significant antimycobacterial activity comparable to that of the rifampin control (2 µg/mL). Evaluation of the cytotoxicity of these 2 extracts using the MTT assay also showed that the extracts were less toxic to 3 human cell lines than was the DMSO positive control. This study demonstrates that aqueous extracts of the roots of H. maximum and Acorus calamus possess strong in vitro antimycobacterial activity, validates traditional knowledge, and provides potential for the development of urgently needed novel antituberculous therapeutics.


2014 ◽  
Vol 58 (6) ◽  
pp. 3312-3326 ◽  
Author(s):  
B. K. Kishore Reddy ◽  
Sudhir Landge ◽  
Sudha Ravishankar ◽  
Vikas Patil ◽  
Vikas Shinde ◽  
...  

ABSTRACTPantothenate kinase (PanK) catalyzes the phosphorylation of pantothenate, the first committed and rate-limiting step toward coenzyme A (CoA) biosynthesis. In our earlier reports, we had established that the type I isoform encoded by thecoaAgene is an essential pantothenate kinase inMycobacterium tuberculosis, and this vital information was then exploited to screen large libraries for identification of mechanistically different classes of PanK inhibitors. The present report summarizes the synthesis and expansion efforts to understand the structure-activity relationships leading to the optimization of enzyme inhibition along with antimycobacterial activity. Additionally, we report the progression of two distinct classes of inhibitors, the triazoles, which are ATP competitors, and the biaryl acetic acids, with a mixed mode of inhibition. Cocrystallization studies provided evidence of these inhibitors binding to the enzyme. This was further substantiated with the biaryl acids having MIC against the wild-typeM. tuberculosisstrain and the subsequent establishment of a target link with an upshift in MIC in a strain overexpressing PanK. On the other hand, the ATP competitors had cellular activity only in aM. tuberculosisknockdown strain with reduced PanK expression levels. Additionally,in vitroandin vivosurvival kinetic studies performed with aM. tuberculosisPanK (MtPanK) knockdown strain indicated that the target levels have to be significantly reduced to bring in growth inhibition. The dual approaches employed here thus established the poor vulnerability of PanK inM. tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document