scholarly journals Evaluasi Tebal Perkerasan Lentur Akibat Beban Berlebih Dengan Metode Austroads Menggunakan Program Circly 6.0

2020 ◽  
Vol 16 (2) ◽  
pp. 127
Author(s):  
Anita Rahmawati ◽  
Muhammad Iqbal ◽  
Emil Adly

Faktor utama terjadinya kerusakan jalan yaitu akibat dari angkutan barang yang membawa beban melebihi sumbu terberat suatu kendaraan (<em>Overload</em>). Penelitian ini dilakukan untuk membandingkan desain tebal perkerasan menggunakan beban standar dan akibat beban berlebih kendaraan. Metode Austroads digunakan dalam mendesain tebal perkerasan, sedangkan Program Circly 6.0 digunakan untuk mengevaluasi kemampuan tebal perkerasan tersebut dalam memikul beban. Data LHR dan beban kendaraan digunakan untuk menghitung nilai <em>Equivalent Standard Axle</em><em>s</em> (ESA), <em>Cumulative Growth Factor</em> (CGF), dan <em>Design Equivalent Standard Axle</em><em>s</em> (DESA), sehingga dapat diketahui jenis material dan tebal setiap lapis perkerasan menggunakan <em>Design Chart</em>. Dari hasil penelitian didapatkan tebal lapis perkerasan untuk umur rencana 20 tahun dengan CBR tanah dasar 5% untuk beban standar yaitu Lapis permukaan 17,5 cm (Aspal, Modulus 3000 MPa), Lapis pondasi atas 10 cm (Granular, Modulus 350 MPa), dan lapis pondasi bawah 25 cm (<em>Cemented Material</em>, Modulus 5000 MPa), sedangkan untuk beban berlebih dengan material yang sama, tebal perkerasan terdiri dari Lapis permukaan 22,5 cm, Lapis pondasi atas 10 cm, dan  lapis pondasi bawah 20 cm. Beban berlebih yang digunakan dalam perhitungan masuk dalam kategori pelanggaran tingkat II (5-15%) dan tingkat III (&gt;25%).  Dari Program Circly 6.0 dapat diketahui bahwa desain Lapis perkerasan untuk beban standar maupun beban berlebih sudah memenuhi standar dan aman untuk digunakan. Hal ini ditandai dengan nilai <em>Cumulative Damage Factor</em> (CDF) ≤1

2020 ◽  
Vol 1 (1) ◽  
pp. 137-146
Author(s):  
Geniusman Sidabutar ST IPM ◽  
Desyandi Putraldi ST

ABSTRAK Coal hauling road merupakan jalan utama yang dipergunakan untuk mengangkut batubara dari Pit ke Stockpile Port dengan jarak 48 Km menggunakan unit dump truck bermuatan 26 ton hingga 34 ton dengan target produksi 1.000.000 ton pertahun. Unit dump truck yang digunakan masuk ke dalam kategori truck 3 sumbu – sedang, dengan nilai faktor ekivalen beban atau Vehicle Damage Factor (VDF) sesuai dengan tabel dari Manual Perkerasan Jalan 2017. Jumlah lintas harian rata-rata (LHR) semua unit dump truck yang melintas dalam sehari mencapai 270 lintasan sehingga jumlah kumulatif beban gandar standar (CESA) dalam hal ini CESA pangkat 4 sebesar 12.86 x 106 dan CESA pangkat 5 sebesar 17.69 x 106.Secara visual dan kondisi yang ada california bearing ratio (CBR) tanah dasar coal hauling road lebih besar dari 6% maka tidak tidak diperlukan perbaikan tanah dasar. Struktur pengerasan berdasarkan ESA5 masuk ke dalam kategori Bagan Desain 3 dimana berdasarkan Bagan Desain 3, desain perkerasan jalan dilakukan dengan menggunakan pondasi agregat kelas A hingga menggunakan asphaltic concrete wearing course (AC WC). Secara aktual Bagan Desain 3 tidak dapat terpenuhi, sebagai alternatif adalah menggunakan Bagan Desain 5 dimana perkerasan jalan menggunakan 3 lapisan, yaitu lapis pondasi agregat kelas A, kelas B dan Burda (lapis penutup berupa laburan dengan ukuran 20 mm).Penerapan perkerasan jalan dengan mengunakan Bagan Desain 5, khususnya penggunaan agregat A di coal hauling road dipilih menggunakan ukuran 10 mm - 20 mm, 20 mm – 30 mm dan 30 mm – 50 mm sedangkan lapisan burda tidak digunakan. Penggunaan agregat modifikasi ini telah dilakukan di STA KM 37 dengan panjang jalan mencapai 300 meter. Tujuan dari penggunaan agregat modifikasi ini yaitu untuk menjaga traksi roda kendaraan dengan permukaan jalan, mempercepat slippery, mengurangi potensi jalan berdebu dan mengurangi perawatan jalan khususnya penggunaan unit grader. Kata kunci: Coal hauling Road, VDF, LHR, ESA, Manual Desain Perkerasan Jalan, Bagan Desain, Agregat  ABSTRACT Coal hauling road is the main road used to transport coal from the Pit to Stockpile Port with a distance of 48 Km using dump trucks capacity 26 - 34 tons with a production target of 1,000,000 tons per year. The dump truck units used fall into the 3 axes - medium truck category, with the value of the Vehicle Damage Factor (VDF) in accordance with the table from the Road Pavement Manual 2017. The average daily traffic count (LHR) of all dump truck units passing in a day reaches 270 passes so that the cumulative number of standard axle loads (CESA) in this case CESA 4 is 12.86 x 106 and CESA 5 is 17.69 x 106.Visually and the existing condition of California bearing ratio (CBR) of subgrade coal hauling road is greater than 6%, there is no need for subgrade improvement. Based on ESA5 the hardening structure will use Design Chart 3 category. Based on Design Chart 3 the pavement design is carried out using aggregate foundation class A to using asphaltic concrete wearing course (AC WC). Actually Design Chart 3 cannot be fulfilled, as an alternative is to use Design Chart 5 where the pavement uses 3 layers, namely the aggregate foundation layers of class A, class B and Burda (the covering layer is a 20 mm diameter).The application of pavement using Design Chart 5, specifically the use of aggregate A in coal hauling road is chosen using sizes 10 mm - 20 mm, 20 mm - 30 mm and 30 mm - 50 mm while the burda layer is not used. The use of this modified aggregate has been carried out at STA KM 37 with a road length of up to 300 meters. The purpose of using this modified aggregate is to maintain vehicle wheel traction with the road surface, accelerate slippery, reduce the potential for dusty roads and reduce road maintenance, especially the use of grader units. Keywords: Coal hauling Road, VDF, LHR, ESA, Road Pavement Design Manual, Design Chart, Aggregate


Author(s):  
C. G. Plopper ◽  
C. Helton ◽  
A. J. Weir ◽  
J. A. Whitsett ◽  
T. R. Korfhagen

A wide variety of growth factors are thought to be involved in the regulation of pre- and postnatal lung maturation, including factors which bind to the epidermal growth factor receptor. Marked pulmonary fibrosis and enlarged alveolar air spaces have been observed in lungs of transgenic mice expressing human TGF-α under control of the 3.7 KB human SP-C promoter. To test whether TGF-α alters lung morphogenesis and cellular differentiation, we examined morphometrically the lungs of adult (6-10 months) mice derived from line 28, which expresses the highest level of human TGF-α transcripts among transgenic lines. Total volume of lungs (LV) fixed by airway infusion at standard pressure was similar in transgenics and aged-matched non-transgenic mice (Fig. 1). Intrapulmonary bronchi and bronchioles made up a smaller percentage of LV in transgenics than in non-transgenics (Fig. 2). Pulmonary arteries and pulmonary veins were a smaller percentage of LV in transgenic mice than in non-transgenics (Fig. 3). Lung parenchyma (lung tissue free of large vessels and conducting airways) occupied a larger percentage of LV in transgenics than in non-transgenics (Fig. 4). The number of generations of branching in conducting airways was significantly reduced in transgenics as compared to non-transgenic mice. Alveolar air space size, as measured by mean linear intercept, was almost twice as large in transgenic mice as in non-transgenics, especially when different zones within the lung were compared (Fig. 5). Alveolar air space occupied a larger percentage of the lung parenchyma in transgenic mice than in non-transgenic mice (Fig. 6). Collagen abundance was estimated in histological sections as picro-Sirius red positive material by previously-published methods. In intrapulmonary conducting airways, collagen was 4.8% of the wall in transgenics and 4.5% of the wall in non-transgenic mice. Since airways represented a smaller percentage of the lung in transgenics, the volume of interstitial collagen associated with airway wall was significantly less. In intrapulmonary blood vessels, collagen was 8.9% of the wall in transgenics and 0.7% of the wall in non-transgenics. Since blood vessels were a smaller percentage of the lungs in transgenics, the volume of collagen associated with the walls of blood vessels was five times greater. In the lung parenchyma, collagen was 51.5% of the tissue volume in transgenics and 21.2% in non-transgenics. Since parenchyma was a larger percentage of lung volume in transgenics, but the parenchymal tissue was a smaller percent of the volume, the volume of collagen associated with parenchymal tissue was only slightly greater. We conclude that overexpression of TGF-α during lung maturation alters many aspects of lung development, including branching morphogenesis of the airways and vessels and alveolarization in the parenchyma. Further, the increases in visible collagen previously associated with pulmonary fibrosis due to the overexpression of TGF-α are a result of actual increases in amounts of collagen and in a redistribution of collagen within compartments which results from morphogenetic changes. These morphogenetic changes vary by lung compartment. Supported by HL20748, ES06700 and the Cystic Fibrosis Foundation.


2001 ◽  
Vol 353 (3) ◽  
pp. 735
Author(s):  
K. PEYROLLIER ◽  
E. HAJDUCH ◽  
A. GRAY ◽  
G. J. LITHERLAND ◽  
A. R. PRESCOTT ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document