scholarly journals Analisis Pengaturan Sistem Catu Daya Pada Satelit Nano

2017 ◽  
Vol 9 (3) ◽  
Author(s):  
Fasny F. A Rafsanzani ◽  
Budi Syihabuddin ◽  
Edwar Edwar ◽  
Heroe Wijanto

The success of a nanosatellite mission is depend on the reliability of the Electrical Power System (EPS) to ensure the subsystems on the nanosatellite working properly. Therefore, an effective power distribution control is required. This research will explain how to distribute electrical power effectively to the subsystems according to the condition of the nanosatellite (sunlight or eclipse). To illustrate this, a simulation and analysis of the EPS power management module design consisting the LT3757 boost converter and LT3652 battery charger were performed. From the simulation results, it will be seen that when the nanosatellite is exposed to the sun, the system will distribute the power to the load using the input power from the panel surya that has passed the boost converter component (12 Volt), while charging the battery until it’s fully charged (7,4 Volt). But during the eclipse phase the system will supply the load with the power generated by the battery (7,4 Volt)

Author(s):  
Elisa Mostacciuolo ◽  
Luigi Iannelli ◽  
Salvatore Sagnelli ◽  
Francesco Vasca ◽  
Raffaele Luisi ◽  
...  

Author(s):  
Pratul Arvind ◽  
Rudra prakash Maheswari

Electric Power Distribution System is a complex network of electrical power system. Also, large number of lines on a distribution system experiences regular faults which lead to high value of current. Speedy and precise fault location plays a pivotal role in accelerating system restoration which is a need of modern day. Unlike transmission system which involves a simple connection, distribution system has a very complicated structure thereby making it a herculean task to design the network for computational analysis. In this paper, the authors have simulated IEEE 13- node distribution system using PSCAD which is an unbalanced system and current samples are generated at the substation end. A Fuzzy c-mean (FCM) and statistical based approach has been used. Samples are transformed as clusters by use of FCM and fed to Expectation- Maximization (EM) algorithm for classifying and locating faults in an unbalanced distribution system. Further, it is to be kept in mind that the combination has not been used for the above purpose as per the literature available till date.


2014 ◽  
Vol 24 (01) ◽  
pp. 1550009 ◽  
Author(s):  
Xiaodao Chen ◽  
Shiyan Hu

Growing concerns on the energy crisis impose great challenges in development and deployment of the smart grid technologies into the existing electrical power system. A key enabling technology in smart grid is distributed generation, which refers to the technology that power generating sources are located in a highly distributed fashion and each customer is both a consumer and a producer for energy. An important optimization problem in distributed generation design is the insertion of distributed generators (DGs), which are often renewable resources exploiting e.g., photovoltaic, hydro, wind, ocean energy. In this paper, a new power loss filtering based sensitivity guided cross entropy (CE) algorithm is proposed for the distributed generator insertion problem. This algorithm is based on the advanced CE optimization technique which exploits the idea of importance sampling in performing optimization. Our experimental results demonstrate that on large distribution networks, our algorithm can largely reduce (up to 179.3%) power loss comparing to a state-of-the-art sensitivity guided greedy algorithm with small runtime overhead. In addition, our algorithm runs about 5× faster than the classical CE algorithm due to the integration of power loss filtering and sensitivity optimization. Moreover, all existing techniques only test on very small distribution systems (usually with < 50 nodes) while our experiments are performed on the distribution networks with up to 5000 nodes, which matches the realistic setup. These demonstrate the practicality of the proposed algorithm.


2013 ◽  
Vol 791-793 ◽  
pp. 1889-1891
Author(s):  
Yan Li Fan ◽  
Qing En Li

The low-voltage distribution system is the key component of the electrical power system. Some analysis and research of the low-voltage distribution system is carried out in this paper, which provides some scientific basis to design the low-voltage distribution system. Firstly, the summarize of low-voltage distribution system is taken. The influence to productions and livings of low-voltage distribution system is introduced. Secondly, the mode of connection and design philosophy of low-voltage distribution system is studied in detail, especially the high-rise buildings low-voltage distribution system is concluded and summarized.


Author(s):  
Maha Yousif Hasan ◽  
Dheyaa Jasim Kadhim

Many consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is satisfied. It divides the measured data for actual power (A_p ) of the electrical model into two portions: the training portion is selected for different maximum actual powers, and the validation portion is determined based on the minimum output power consumption and then used for comparison with the actual required input power. Simulation results show the energy expenditure problem can be solved with good accuracy in energy consumption by reducing the maximum rate (A_p ) in a given time (24) hours for a single house, as well as electricity’s bill cost, is reduced.


2021 ◽  
Vol 11 (23) ◽  
pp. 11332
Author(s):  
Imran Haseeb ◽  
Ammar Armghan ◽  
Wakeel Khan ◽  
Fayadh Alenezi ◽  
Norah Alnaim ◽  
...  

The load pressure on electrical power system is increased during last decade. The installation of new power generators (PGs) take huge time and cost. Therefore, to manage current power demands, the solar plants are considered a fruitful solution. However, critical caring and balance output power in solar plants are the highlighted issues. Which needs a proper procedure in order to minimize balance output power and caring issues in solar plants. This paper investigates artificial neural network (ANN) and hybrid boost converter (HBC) based MPPT for improving the output power of solar plants. The proposed model is analyzed in two steps, the offline step and the online step. Where the offline status is used for training various terms of ANNs in terms of structure and algorithm while in the online step, the online procedure is applied with optimum ANN for maximum power point tracking (MPPT) using traditional converter and hybrid converter in solar plants. Moreover, a detail analytical framework is studied for both proposed steps. The mathematical and simulation approaches show that the presented model efficiently regulate the output of solar plants. This technique is applicable for current installed solar plants which reduces the cost per generation.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3110
Author(s):  
Konstantinos V. Blazakis ◽  
Theodoros N. Kapetanakis ◽  
George S. Stavrakakis

Electric power grids are a crucial infrastructure for the proper operation of any country and must be preserved from various threats. Detection of illegal electricity power consumption is a crucial issue for distribution system operators (DSOs). Minimizing non-technical losses is a challenging task for the smooth operation of electrical power system in order to increase electricity provider’s and nation’s revenue and to enhance the reliability of electrical power grid. The widespread popularity of smart meters enables a large volume of electricity consumption data to be collected and new artificial intelligence technologies could be applied to take advantage of these data to solve the problem of power theft more efficiently. In this study, a robust artificial intelligence algorithm adaptive neuro fuzzy inference system (ANFIS)—with many applications in many various areas—is presented in brief and applied to achieve more effective detection of electric power theft. To the best of our knowledge, there are no studies yet that involve the application of ANFIS for the detection of power theft. The proposed technique is shown that if applied properly it could achieve very high success rates in various cases of fraudulent activities originating from unauthorized energy usage.


2015 ◽  
Vol 18 (2) ◽  
Author(s):  
Dzulfikar Muhammad Azhar ◽  
Yuniarto Yuniarto

Dzulfikar Muhammad Azhar, Yuniarto, in this paper explian that disruption of the power distribution network of 20 KV greatly influence the level of reliability of electric power system. Localize interference by means of network down one by one causing a long recovery time. As a result, SAIDI relatively high value. Protection Relays 551 SEL has a feature that can save the nominal fault current value last received. The value stored in the relay memory. Value of fault current can be processed into the distance nuisance. Thus, the fault current value can help officers to track the fault location based on distance. SCADA as a system that monitors and controls the electrical power system equipment remotely in real time on duty to display the current value of disturbance located at 551 SEL protection relays to be sent to the Control Center or the Master Station. Keywords : SCADA, fault current, relay protection 551 SEL


2011 ◽  
Vol 403-408 ◽  
pp. 5007-5014
Author(s):  
Pratul Arvind ◽  
Rudra Prakash Maheshwari

Electric Power Distribution System is a complex network of electrical power system. Also, large number of lines on a distribution system experiences regular faults which lead to high value of current. Speedy and precise fault location plays a pivotal role in accelerating system restoration which is a need of modern day. Unlike transmission system which involves a simple connection, distribution system has a very complicated structure thereby making it a herculean task to design the network for computational analysis. In this paper, the authors have simulated IEEE 13- node distribution system using PSCAD which is an unbalanced system and current samples are generated at the substation end. Considering the application of signal processing tools to power systems a talk of modern day research, Gabor decomposition of the current samples are also presented which is utilised for locating all ten types of faults. It is kept in mind that Gabor transform has not been applied to current samples of distribution system as per the literature available till date.


Sign in / Sign up

Export Citation Format

Share Document