scholarly journals Remote Sensing for Detection and Monitoring of Vegetation Affected by Oil Spills

Author(s):  
Bashir Adamu ◽  
Booker Ogutu ◽  
Kevin Tansey

This study is aimed at demonstrating application of vegetation spectral techniques for detection and monitoring of impact of oil spills on vegetation. Vegetation spectral reflectance from Landsat 8 data were used in the calculation of five vegetation indices (normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), adjusted resistant vegetation index 2 (ARVI2), green-infrared index (G/NIR) and green-shortwave infrared (G/SWIR) from the spill sites (SS) and non-spill (NSS) sites in 2013 (pre-oil spill), 2014 (oil spill date) and 2015 (post-oil spill) for statistical comparison. The result shows that NDVI, SAVI, ARVI2, G/NIR and G/SWIR indicated certain level difference between vegetation condition at the SS and the NSS were significant with p-value <0.5 in December 2013. In December 2014 vegetation conditions indicated higher level of significant difference between the vegetation at the SS and NSS as follows where NDVI, SAVI and ARVI2 with p-value 0.005, G/NIR - p-value 0.01 and GSWIR p-value 0.05. Similarly, in January 2015 a very significant difference with p-value <0.005. Three indices NDVI, ARVI2 and G/NIR indicated highly significant difference in vegetation conditions with p-value <0.005 between December 2013 and December 2014 at the same sites. Post—spill analysis show that NDVI and ARVI2 indicated low level of significance difference p-value <0.05 suggesting subtle change in vegetation conditions between December 2014 and January 2015. This technique is essential for real time detection, response and monitoring of oil spills from pipelines for mitigation of pollution at the affected sites in the mangrove forest.

Agriculture ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 246 ◽  
Author(s):  
Baabak Mamaghani ◽  
M. Grady Saunders ◽  
Carl Salvaggio

With the inception of small unmanned aircraft systems (sUAS), remotely sensed images have been captured much closer to the ground, which has meant better resolution and smaller ground sample distances (GSDs). This has provided the precision agriculture community with the ability to analyze individual plants, and in certain cases, individual leaves on those plants. This has also allowed for a dramatic increase in data acquisition for agricultural analysis. Because satellite and manned aircraft remote sensing data collections had larger GSDs, self-shadowing was not seen as an issue for agricultural remote sensing. However, sUAS are able to image these shadows which can cause issues in data analysis. This paper investigates the inherent reflectance variability of vegetation by analyzing six Coneflower plants, as a surrogate for other cash crops, across different variables. These plants were measured under different forecasts (cloudy and sunny), at different times (08:00 a.m., 09:00 a.m., 10:00 a.m., 11:00 a.m. and 12:00 p.m.), and at different GSDs (2, 4 and 8 cm) using a field portable spectroradiometer (ASD Field Spec). In addition, a leafclip spectrometer was utilized to measure individual leaves on each plant in a controlled lab environment. These spectra were analyzed to determine if there was any significant difference in the health of the various plants measured. Finally, a MicaSense RedEdge-3 multispectral camera was utilized to capture images of the plants every hour to analyze the variability produced by a sensor designed for agricultural remote sensing. The RedEdge-3 was held stationary at 1.5 m above the plants while collecting all images, which produced a GSD of 0.1 cm/pixel. To produce 2, 4, and 8 cm GSD, the MicaSense RedEdge-3 would need to be at an altitude of 30.5 m, 61 m and 122 m respectively. This study did not take background effects into consideration for either the ASD or MicaSense. Results showed that GSD produced a statistically significant difference (p < 0.001) in Normalized Difference Vegetation Index (NDVI, a commonly used metric to determine vegetation health), R 2 values demonstrated a low correlation between time of day and NDVI, and a one-way ANOVA test showed no statistically significant difference in the NDVI computed from the leafclip probe (p-value of 0.018). Ultimately, it was determined that the best condition for measuring vegetation reflectance was on cloudy days near noon. Sunny days produced self-shadowing on the plants which increased the variability of the measured reflectance values (higher standard deviations in all five RedEdge-3 channels), and the shadowing of the plants decreased as time approached noon. This high reflectance variability in the coneflower plants made it difficult to accurately measure the NDVI.


2020 ◽  
Vol 12 (15) ◽  
pp. 2433 ◽  
Author(s):  
Iman Rousta ◽  
Haraldur Olafsson ◽  
Md Moniruzzaman ◽  
Hao Zhang ◽  
Yuei-An Liou ◽  
...  

Drought has severe impacts on human society and ecosystems. In this study, we used data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Tropical Rainfall Measuring Mission (TRMM) sensors to examine the drought effects on vegetation in Afghanistan from 2001 to 2018. The MODIS data included the 16-day 250-m composites of the Normalized Difference Vegetation Index (NDVI) and the Vegetation Condition Index (VCI) with Land Surface Temperature (LST) images with 1 km resolution. The TRMM data were monthly rainfalls with 0.1-degree resolution. The relationship between drought and index-defined vegetation variation was examined by using time series, regression analysis, and anomaly calculation. The results showed that the vegetation coverage for the whole country, reaching the lowest levels of 6.2% and 5.5% were observed in drought years 2001 and 2008, respectively. However, there is a huge inter-regional variation in vegetation coverage in the study period with a significant rising trend in Helmand Watershed with R = 0.66 (p value = 0.05). Based on VCI for the same two years (2001 and 2008), 84% and 72% of the country were subject to drought conditions, respectively. Coherently, TRMM data confirm that 2001 and 2008 were the least rainfall years of 108 and 251 mm, respectively. On the other hand, years 2009 and 2010 were registered with the largest vegetation coverage of 16.3% mainly due to lower annual LST than average LST of 14 degrees and partially due to their slightly higher annual rainfalls of 378 and 425 mm, respectively, than the historical average of 327 mm. Based on the derived VCI, 28% and 21% of the study area experienced drought conditions in 2009 and 2010, respectively. It is also found that correlations are relatively high between NDVI and VCI (r = 0.77, p = 0.0002), but slightly lower between NDVI and precipitation (r = 0.51, p = 0.03). In addition, LST played a key role in influencing the value of NDVI. However, both LST and precipitation must be considered together in order to properly capture the correlation between drought and NDVI.


2020 ◽  
Vol 12 (17) ◽  
pp. 2708 ◽  
Author(s):  
Qi Wang ◽  
Jiancheng Li ◽  
Taoyong Jin ◽  
Xin Chang ◽  
Yongchao Zhu ◽  
...  

Soil moisture is an important variable in ecological, hydrological, and meteorological studies. An effective method for improving the accuracy of soil moisture retrieval is the mutual supplementation of multi-source data. The sensor configuration and band settings of different optical sensors lead to differences in band reflectivity in the inter-data, further resulting in the differences between vegetation indices. The combination of synthetic aperture radar (SAR) data with multi-source optical data has been widely used for soil moisture retrieval. However, the influence of vegetation indices derived from different sources of optical data on retrieval accuracy has not been comparatively analyzed thus far. Therefore, the suitability of vegetation parameters derived from different sources of optical data for accurate soil moisture retrieval requires further investigation. In this study, vegetation indices derived from GF-1, Landsat-8, and Sentinel-2 were compared. Based on Sentinel-1 SAR and three optical data, combined with the water cloud model (WCM) and the advanced integral equation model (AIEM), the accuracy of soil moisture retrieval was investigated. The results indicate that, Sentinel-2 data were more sensitive to vegetation characteristics and had a stronger capability for vegetation signal detection. The ranking of normalized difference vegetation index (NDVI) values from the three sensors was as follows: the largest was in Sentinel-2, followed by Landsat-8, and the value of GF-1 was the smallest. The normalized difference water index (NDWI) value of Landsat-8 was larger than that of Sentinel-2. With reference to the relative components in the WCM model, the contribution of vegetation scattering exceeded that of soil scattering within a vegetation index range of approximately 0.55–0.6 in NDVI-based models and all ranges in NDWI1-based models. The threshold value of NDWI2 for calculating vegetation water content (VWC) was approximately an NDVI value of 0.4–0.55. In the soil moisture retrieval, Sentinel-2 data achieved higher accuracy than data from the other sources and thus was more suitable for the study for combination with SAR in soil moisture retrieval. Furthermore, compared with NDVI, higher accuracy of soil moisture could be retrieved by using NDWI1 (R2 = 0.623, RMSE = 4.73%). This study provides a reference for the selection of optical data for combination with SAR in soil moisture retrieval.


Author(s):  
A. K. Vishwakarma ◽  
A. K. Agnihotri ◽  
R. Rai ◽  
B. K. Shrivastva ◽  
S. Mishra

<p><strong>Abstract.</strong> This study aims to evaluate the effect of underground coal mining subsidence on the growth of native vegetation. For this study, an underground coal mine of South Eastern Coalfields Limited (SECL), India was selected. Changes in vegetation indices were analyzed using three remote sensing data of the previous five years. Three period’s Landsat 8 OLI resolution image data were used to calculate Normalized Difference Vegetation Index (NDVI) of the years 2014, 2016 and 2018 in QGIS environment. The study showed that the local grassland and forest were affected by the mining exploitation and subsidence but those effects were not significant to have an adverse impact on the same. The short-term mining was having an impact on the vegetation growth but the effects gradually disappeared with the gradual stabilization of the subsided land and in absence of human interference, vegetation recovered well. In long-term, subsidence was not having a major impact on the vegetation growth. Thus, coal resources exploitation and subsidence of the said mine of SECL did not bring out an adverse impact on a wide range of forest and grassland ecosystems, and these ecosystems could carry the partial destruction and ultimately stabilized ecosystems by self-repair.</p>


2021 ◽  
Vol 14 (2) ◽  
pp. 869
Author(s):  
João Pedro Ocanha Krizek ◽  
Luciana Cavalcanti Maia Santos

A obtenção dos valores de reflectância se mostra imprescindível para se calcular índices de vegetação, como o NDVI (Normalized Difference Vegetation Index). Este índice é utilizado para classificar a distribuição global da vegetação e para inferir variáveis ecológicas e ambientais, como a produção de fitomassa.  Apesar disso, não é incomum encontrar trabalhos que utilizam os números digitais (ND) para a obtenção direta dos índices de vegetação; entretanto, tais números digitais não representam valores físicos reais e, portanto, não podem ser utilizados diretamente para o cálculo do NDVI. Assim, o objetivo deste artigo é demonstrar um protocolo metodológico para a conversão dos ND das imagens Landsat 8/OLI em valores de reflectância e a subsequente obtenção do NDVI, através da linguagem LEGAL (Linguagem Espacial para Geoprocessamento Algébrico), e, dessa forma, possibilitar a replicação e execução de outras pesquisas que visem obter esse índice de vegetação no software SPRING. Além disso, objetivou-se também demonstrar a importância da conversão dos ND em reflectância, a partir da comparação de uma imagem NDVI gerada através da reflectância com a mesma imagem NDVI gerada por meio dos dados brutos. Os resultados apontaram que a obtenção do NDVI através dos valores brutos de imagens de sensoriamento remoto, sem a necessária conversão dos números digitais em valores reais de reflectância, leva a resultados incorretos na estimativa de dados ecológicos da vegetação, subestimando a fitomassa. Dessa forma, esse trabalho ressalta a importância de se seguir um protocolo metodológico para a estimativa correta da fitomassa, produtividade e outros parâmetros da vegetação.   Methodological protocol for obtaining reflectance and NDVI values from Landsat 8/OLI images using LEGALA B S T R A C TObtaining reflectance values is essential for calculating vegetation indices, such as the NDVI (Normalized Difference Vegetation Index). This index is used to classify the global distribution of vegetation and to infer the ecological and environmental parameters such as phytomass production. Nevertheless, it is common to find works that use digital numbers (DN) to directly obtain vegetation indices; however, such digital numbers do not represent actual physical values and therefore cannot be used directly for NDVI calculation. Thus, this paper aims to demonstrate a methodological protocol for DN conversion of Landsat 8/OLI images into reflectance values and then for obtaining NDVI through the LEGAL (Spatial Language for Algebraic Geoprocessing). Therefore, this protocol enables the replication and execution of other studies aimed to obtain this vegetation index using SPRING. In addition, the objective was also to demonstrate the importance of converting DN to reflectance by comparing an NDVI image generated from reflectance with the same NDVI image generated through the raw data. The results showed that obtaining the NDVI through the raw values of remote sensing images, without the conversion of digital numbers to real reflectance values, leads to incorrect results in the estimation of ecological vegetation data, underestimating phytomass, thus emphasizing the importance of following a methodological protocol for the correct estimation of biomass, productivity and other phytological parameters.Keywords: protocol, NDVI, reflectance, Landsat 8, SPRING


2020 ◽  
Vol 13 (1) ◽  
pp. 076
Author(s):  
Cristiane Nunes Francisco ◽  
Paulo Roberto da Silva Ruiz ◽  
Cláudia Maria de Almeida ◽  
Nina Cardoso Gruber ◽  
Camila Souza dos Anjos

As operações aritméticas efetuadas entre bandas espectrais de imagens de sensoriamento remoto necessitam de correção atmosférica para eliminar os efeitos atmosféricos na resposta espectral dos alvos, pois os números digitais não apresentam escala equivalente em todas as bandas. Índices de vegetação, calculados com base em operações aritméticas, além de caracterizarem a vegetação, minimizam os efeitos da iluminação da cena causados pela topografia. Com o objetivo de analisar a eficácia da correção atmosférica no cálculo de índices de vegetação, este trabalho comparou os Índices de Vegetação por Diferença Normalizada (Normalized Difference Vegetation Index - NDVI), calculados com base em imagens corrigidas e não corrigidas de um recorte de uma cena Landsat 8/OLI situado na cidade do Rio de Janeiro, Brasil. Os resultados mostraram que o NDVI calculado pela reflectância, ou seja, imagem corrigida, apresentou o melhor resultado, devido ao maior discriminação das classes de vegetação e de corpos d'água na imagem, bem como à minimização do efeito topográfico nos valores dos índices de vegetação.  Analysis of the atmospheric correction impact on the assessment of the Normalized Difference Vegetation Index for a Landsat 8 oli image A B S T R A C TThe image arithmetic operations must be executed on previously atmospherically corrected bands, since the digital numbers do not present equivalent scales in all bands. Vegetation indices, calculated by means of arithmetic operations, are meant for both targets characterization and the minimization of illumination effects caused by the topography. With the purpose to analyze the efficacy of atmospheric correction in the calculation of vegetation indices with respect to the mitigation of atmospheric and topographic effects on the targets spectral response, this paper compared the NDVI (Normalized Difference Vegetation Index) calculated using corrected and uncorrected images related to an inset of a Landsat 8 OLI scene from Rio de Janeiro, Brazil. The result showed that NDVI calculated from reflectance values, i.e, corrected images, presented the best results due to a greater number of vegetation patches and water bodies classes that could be discriminated in the image, as well the mitigation of the topographic effect in the vegetation indices values.Keywords: remote sensing, urban forest, atmospheric correction.


2020 ◽  
Vol 12 (7) ◽  
pp. 1225 ◽  
Author(s):  
Abdul-Lateef Balogun ◽  
Shamsudeen Temitope Yekeen ◽  
Biswajeet Pradhan ◽  
Omar F. Althuwaynee

Oil spills are a global phenomenon with impacts that cut across socio-economic, health, and environmental dimensions of the coastal ecosystem. However, comprehensive assessment of oil spill impacts and selection of appropriate remediation approaches have been restricted due to reliance on laboratory experiments which offer limited area coverage and classification accuracy. Thus, this study utilizes multispectral Landsat 8-OLI remote sensing imagery and machine learning models to assess the impacts of oil spills on coastal vegetation and wetland and monitor the recovery pattern of polluted vegetation and wetland in a coastal city. The spatial extent of polluted areas was also precisely quantified for effective management of the coastal ecosystem. Using Johor, a coastal city in Malaysia as a case study, a total of 49 oil spill (ground truth) locations, 54 non-oil-spill locations and Landsat 8-OLI data were utilized for the study. The ground truth points were divided into 70% training and 30% validation parts for the classification of polluted vegetation and wetland. Sixteen different indices that have been used to monitor vegetation and wetland stress in literature were adopted for impact and recovery analysis. To eliminate similarities in spectral appearance of oil-spill-affected vegetation, wetland and other elements like burnt and dead vegetation, Support Vector Machine (SVM) and Random Forest (RF) machine learning models were used for the classification of polluted and nonpolluted vegetation and wetlands. Model optimization was performed using a random search method to improve the models’ performance, and accuracy assessments confirmed the effectiveness of the two machine learning models to identify, classify and quantify the area extent of oil pollution on coastal vegetation and wetland. Considering the harmonic mean (F1), overall accuracy (OA), User’s accuracy (UA), and producers’ accuracy (PA), both models have high accuracies. However, the RF outperformed the SVM with F1, OA, PA and UA values of 95.32%, 96.80%, 98.82% and 95.11%, respectively, while the SVM recorded accuracy values of F1 (80.83%), OA (92.87%), PA (95.18%) and UA (93.81%), respectively, highlighting 1205.98 hectares of polluted vegetation and 1205.98 hectares of polluted wetland. Analysis of the vegetation indices revealed that spilled oil had a significant impact on the vegetation and wetland, although steady recovery was observed between 2015-2018. This study concludes that Chlorophyll Vegetation Index, Modified Difference Water Index, Normalized Difference Vegetation Index and Green Chlorophyll Index vegetation indices are more sensitive for impact and recovery assessment of both vegetation and wetland, in addition to Modified Normalized Difference Vegetation Index for wetlands. Thus, remote sensing and Machine Learning models are essential tools capable of providing accurate information for coastal oil spill impact assessment and recovery analysis for appropriate remediation initiatives.


2020 ◽  
Vol 12 (4) ◽  
pp. 660 ◽  
Author(s):  
Jonathan Peereman ◽  
James Aaron Hogan ◽  
Teng-Chiu Lin

Permanent forest dynamics plots have provided valuable insights into many aspects of forest ecology. The evaluation of their representativeness within the landscape is necessary to understanding the limitations of findings from permanent plots at larger spatial scales. Studies on the representativeness of forest plots with respect to landscape heterogeneity and disturbance effect have already been carried out, but knowledge of how multiple disturbances affect plot representativeness is lacking—particularly in sites where several disturbances can occur between forest plot censuses. This study explores the effects of five typhoon disturbances on the Fushan Forest Dynamics Plot (FFDP) and its surrounding landscape, the Fushan Experimental Forest (FEF), in Taiwan where typhoons occur annually. The representativeness of the FFDP for the FEF was studied using four topographical variables derived from a digital elevation model and two vegetation indices (VIs), Normalized Difference Vegetation Index (NDVI) and Normalized Difference Infrared Index (NDII), calculated from Landsat-5 TM, Landsat-7 ETM+, and Landsat-8 OLI data. Representativeness of four alternative plot designs were tested by dividing the FFDP into subplots over wider elevational ranges. Results showed that the FFDP neither represents landscape elevational range (<10%) nor vegetation cover (<7% of the interquartile range, IQR). Although disturbance effects (i.e., ΔVIs) were also different between the FFDP and the FEF, comparisons showed no under- or over-exposure to typhoon damage frequency or intensity within the FFDP. In addition, the ΔVIs were of the same magnitudes in the plots and the reserve, and the plot covered 30% to 75.9% of IQRs of the reserve ΔVIs. Unexpectedly, the alternative plot designs did not lead to increased representation of damage for 3 out of the 4 tested typhoons and they did not suggest higher representativeness of rectangular vs. square plots. Based on the comparison of mean Euclidian distances, two rectangular plots had smaller distances than four square or four rectangular plots of the same area. Therefore, this study suggests that the current FFDP provides a better representation of its landscape disturbances than alternatives, which contained wider topographical variation and would be more difficult to conduct ground surveys. However, upscaling needs to be done with caution as, in the case of the FEF, plot representativeness varied among typhoons.


Author(s):  
J. M. Landmann ◽  
M. Rutzinger ◽  
M. Bremer ◽  
K. chmidtner

Collecting comprehensive knowledge about spectral signals in areas composed by complex structured objects is a challenging task in remote sensing. In the case of vegetation, shadow effects on reflectance are especially difficult to determine. This work analyzes a larch forest stand (&lt;i&gt;Larix decidua&lt;/i&gt; MILL.) in Pinnis Valley (Tyrol, Austria). The main goal is extracting the larch spectral signal on Landsat 8 (LS8) Operational Land Imager (OLI) images using ground measurements with the Cropscan Multispectral Radiometer with five bands (MSR5) simultaneously to satellite overpasses in summer 2015. First, the relationship between field spectrometer and OLI data on a cultivated grassland area next to the forest stand is investigated. Median ground measurements for each of the grassland parcels serve for calculation of the mean difference between the two sensors. Differences are used as “bias correction” for field spectrometer values. In the main step, spectral unmixing of the OLI images is applied to the larch forest, specifying the larch tree spectral signal based on corrected field spectrometer measurements of the larch understory. In order to determine larch tree and shadow fractions on OLI pixels, a representative 3D tree shape is used to construct a digital forest. Benefits of this approach are the computational savings compared to a radiative transfer modeling. Remaining shortcomings are the limited capability to consider exact tree shapes and nonlinear processes. Different methods to implement shadows are tested and spectral vegetation indices like the Normalized Difference Vegetation Index (NDVI) and Greenness Index (GI) can be computed even without considering shadows.


2021 ◽  
Vol 42 ◽  
pp. 27-40
Author(s):  
Muhammad Daud Khan ◽  
Saba Ali Arooj ◽  
Waqar Ahmed ◽  
Zia-ur Rehman ◽  
Arif Iqbal ◽  
...  

In context of Bonn Challenge commitment, Pakistan (Khyber Pukhtunkhwa) has implemented forest restoration and afforestation on 0.35 million hectares between 2015–2017. Billion Tree Afforestation Project (BTAP) is an initiative of mass afforestation and forest restoration to meet the Bonn Challenge commitment. The current study is a pilot study to evaluate the success of plantation activities by assessment of regeneration, growth performance and survival rate of plantations raised under BTAP in Malakand Forest Division. Further, four vegetation indices were computed from Landsat-8 image, which include Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Modified Soil Adjusted Vegetation Index (MSAVI) and Difference Vegetation Index (DVI). A total of 72 sample plots of 0.1 ha were laid out in 11 plantation sites extended over an area of 647 ha in Timargara, Chakdara and Jandool. According to the results, all the selected plantation sites showed good performance in terms of survival rate, mostly above 90%. In terms of species composition, Eucalyptus camaldulensis has the highest share (81%) followed by Robinia pseduacacia with 17% and Pinus roxburghii with 2% share in the plantation. Growth performance was good in all species; Pinus roxburghii attained an average girth of 14.3 cm and height of 3.21 feet, whereas Eucalyptus camaldulensis and Robinia pseudoacacia attained a mean girth of 10.3 and 12.1 cm with the height of 8.6 and 8.2 feet in 27 months, respectively. Further, a good correlation was observed between the volume (m3) and Landsat-8 spectral values. The highest performance (R2=0.63) was recorded by NDVI and SAVI. The temporal changes in spectral values of Landsat-8 images from 2013 to 2018 showed that the plantation was successful at these sites. The study concluded that FLR activities across the Khyber Pukhtunkwa province will rehabilitate and improve the existing forest ecosystems and support local livelihood for climate change mitigation.


Sign in / Sign up

Export Citation Format

Share Document