scholarly journals Fatty Acids Profiles of Stipe and Blade from the Norwegian Brown Macroalga Laminaria hyperborea, Using Off-Line SPE and GC-MS

Author(s):  
Lena Oksdøl Foseid ◽  
Hanne Devle ◽  
Yngve Stenstrøm ◽  
Carl Fredrik Naess-Andresen ◽  
Dag Ekeberg

A thorough analysis and comparison of the fatty acid profiles of stipe and blade from Laminaria hyperborea, a kelp species found in the northern Atlantic, is presented. Lipids were extracted and fractionated into neutral lipids, free fatty acids and polar lipids, then derivatized to fatty acid methyl esters prior to GC-MS analysis. A total of 42 fatty acids were identified and quantified, including the n-3 fatty acids α-linolenic acid, stearidonic acid and eicosapentaenoic acid. An n-6/n-3 ratio of 0.8:1 was found in blade and 3.5:1 in stipe, respectively. The ratios vary between the lipid fractions within stipe and blade, with the lowest ratio in the polar lipid fraction of blade. The fatty acid amounts are higher in blade than in stipe, and the highest amounts of n-3 fatty acids are found within the neutral lipid fractions. The amounts of polyunsaturated fatty acids are 3.4 times higher in blade than stipe. This study highlights the compositional differences between the lipid fractions of stipe and blade from L. hyperborea. The amount of polyunsaturated fatty acids, compared to saturated- and monounsaturated fatty acids, as well as the n-6/n-3-ratio, is known to influence human health. In the pharmaceutical, food, and feed industries this can be of importance for production and sale of different health products. Additionally, lipids are today among the unused by products of alginate production, exploiting this material for commercial interest should give both economical and environmental benefits.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Lena Foseid ◽  
Hanne Devle ◽  
Yngve Stenstrøm ◽  
Carl Fredrik Naess-Andresen ◽  
Dag Ekeberg

A thorough analysis of the fatty acid profiles of stipe and blade from the kelp species Laminaria hyperborea is presented. Lipid extracts were fractionated into neutral lipids, free fatty acids, and polar lipids, prior to derivatization and GC-MS analysis. A total of 42 fatty acids were identified and quantified, including the n-3 fatty acids α-linolenic acid, stearidonic acid, and eicosapentaenoic acid. The fatty acid amounts are higher in blade than in stipe (7.42 mg/g dry weight and 2.57 mg/g dry weight, resp.). The highest amounts of n-3 fatty acids are found within the neutral lipid fractions with 590.6 ug/g dry weight and 100.9 ug/g dry weight for blade and stipe, respectively. The amounts of polyunsaturated fatty acids are 3.4 times higher in blade than stipe. The blade had the highest PUFA/SFA ratio compared to stipe (1.02 versus 0.76) and the lowest n-6/n-3 ratio (0.8 versus 3.5). This study highlights the compositional differences between the lipid fractions of stipe and blade from L. hyperborea. The amount of polyunsaturated fatty acids compared to saturated- and monounsaturated fatty acids is known to influence human health. In the pharmaceutical, food, and feed industries, this can be of importance for production of different health products.


1968 ◽  
Vol 108 (2) ◽  
pp. 317-323 ◽  
Author(s):  
T. W. Scott ◽  
W. Hansel ◽  
L. E. Donaldson

1. Phosphatidylcholine was the predominant phospholipid in bovine corpora lutea; it accounted for about 50% of the total phospholipid phosphorus. Phosphatidylethanolamine (13%) and ethanolamine plasmalogen (8–9%) were the next two major components. 2. After incubation of the tissue with [32P]orthophosphate the total radioactivity and specific radioactivity of phosphatidylinositol were higher than those of any other lipid. 3. Luteinizing hormone failed to increase significantly the incorporation of [32P]orthophosphate into total phospholipids from luteal tissue slices, but did stimulate progesterone synthesis and lactate production. 4. The proportion of oleate (18:1) in the neutral lipids and phospholipids was higher than that of any other fatty acid. 5. The proportion of unsaturated fatty acid in the tissue lipids exceeded 60%, and almost half of this was polyunsaturated. Arachidonate (20:4), docosatetraenoate (22:4) and docosapentaenoate (22:5) were the principal polyunsaturated fatty acids. 6. After incubation of luteal tissue with [1−14C]acetate, the greatest proportion of radioactivity in the fatty acids isolated from the total lipid fraction was in palmitate (16:0) and docosatetraenoate (22:4). Polyunsaturated fatty acids accounted for almost 50% of the 14C radioactivity incorporated and this pattern was observed in phospholipids, triglycerides and free fatty acids.


2016 ◽  
Vol 56 (11) ◽  
pp. 1928 ◽  
Author(s):  
Luis Tejada ◽  
Eva Salazar ◽  
Adela Abellán ◽  
Begoña Peinado ◽  
Juana Mulero ◽  
...  

The fatty acid composition of neutral lipids (NL), polar lipids (PL) and free fatty acids (FFA) was analysed in dry-cured loins obtained from the native pig breed Chato Murciano (CM) and from a modern crossbreed pig genotype (CG) during the ripening stage (between the 30 and 60 days of processing). Fatty acid concentrations from neutral lipids, polar lipids and free fatty acid fractions were affected by breed. With respect to ripening time, lipolysis was more intense in the CG than in CM product, resulting in a decrease in the concentrations of fatty acids in the NL and PL fractions, accompanied by a corresponding increase in FFA. Results for lipid determination provided evidence that the concentrations of the different groups of fatty acids within the lipid fractions depend on the breed. In order of abundance, the groups of fatty acids in the neutral lipid fraction were monounsaturated fatty acids (MUFA) > saturated fatty acids (SFA) > polyunsaturated fatty acids (PUFA) (59%, 37% and 4% in CM; 58%, 35% and 6% in CG) at 60 days of processing. In the polar lipid fraction, the order was SFA > PUFA > MUFA (44%, 29% and 27% in CM; 42%, 38% and 20% in CG), and in free fatty acid fraction, the order was MUFA > PUFA > SFA (40%, 30%, and 30% in CM; 39%, 32%, and 29% in CG) at 60 days of processing.


1968 ◽  
Vol 46 (3) ◽  
pp. 197-203 ◽  
Author(s):  
R. G. Ackman ◽  
C. A. Eaton ◽  
S. N. Hooper

Fatty acid compositions were determined for total lipid (17.5% of the milk and > 95% triglycerides), 2-monoglyceride obtained by enzymatic hydrolysis of isolated triglyceride, and isolated phospholipid (~1% of total lipids). The total lipid fatty acids of the milk had a composition similar to fin whale depot fat but were enriched in hexadecanoic acid and polyunsaturated fatty acids at the expense of monoethylenic acids; correspondingly the iodine value of 136 (methyl esters) was higher than the normal range (105–120) of North Atlantic fin whale blubber oils. Over 80% of the fatty acids in the 2-position of the triglycerides were accounted for by relatively short chain fatty acids, especially hexadecanoic (54.6%), tetradecanoic (13.7%), and hexadecenoic (11.2%), so that the ester iodine value was only 48. The milk phospholipids had a fatty acid composition basically similar to that of liver phospholipids (methyl ester iodine value 120) with somewhat more polyunsaturated fatty acids and accordingly an iodine value of 144 for methyl esters.


2008 ◽  
Vol 52 (No. 7) ◽  
pp. 203-213 ◽  
Author(s):  
D. Schneideroá ◽  
J. Zelenka ◽  
E. Mrkvicová

We studied the effect of different levels of linseed oils made either of the flax cultivar Atalante with a high content of &alpha;-linolenic acid (612 g/kg) or of the cultivar Lola with a predominating content of linoleic acid (708 g/kg) in a chicken diet upon the fatty acid pattern in meat. Cockerels Ross 308 were fed the diets containing 1, 3, 5 or 7 per cent of oil in the last 15 days of fattening. Breast meat (BM) and thigh meat (TM) without skin of 8 chickens from each dietary group were used for analyses. The relative proportions of fatty acids were expressed as percentages of total determined fatty acids. When feeding Atalante oil, the proportions of n-6 fatty acids were highly significantly lower while those of n-3 fatty acids were higher; the ratio of n-6/n-3 polyunsaturated fatty acids in meat was narrower (<i>P</i> < 0.001) than in chickens fed oil with a low content of &alpha;-linolenic acid. In BM and TM, the relative proportions of &alpha;-linolenic and &gamma;-linolenic acids were nearly the same, the proportion of linoleic acid in BM was lower, and the proportions of the other polyunsaturated fatty acids in BM were higher than in TM. In BM, the ratio of n-6/n-3 polyunsaturated fatty acids was significantly (<i>P</i> < 0.001) more favourable than that found in TM. The relative proportions of total saturated and monounsaturated fatty acids in meat decreased and those of polyunsaturated fatty acids increased significantly (<i>P</i> < 0.01) in dependence on the increasing level of dietary oils. When feeding Atalante oil, a significant increase in the proportion of linoleic acid in BM but not in TM was observed. The proportions of the other n-6 fatty acids decreased and those of all determined n-3 fatty acids, with the exception of docosahexaenoic acid, significantly increased with the increasing level of oil in the diet. When feeding Lola oil, its increasing content in the diet increased the relative proportion of linoleic acid as well as its elongation to &gamma;-linolenic acid; however, the proportions of arachidonic and adrenic acid did not change significantly (<i>P</i> > 0.05). The proportion of &alpha;-linolenic acid increased in both BM and TM. The proportion of eicosapentaenoic and clupanodonic acids in BM significantly decreased. The ratio of n-6 to n-3 polyunsaturated fatty acids ranged from 0.9 to 13.6 and from 1.0 to 17.2 in BM and TM, respectively. An increase in the level of Lola oil in the diet by 1% caused that the n-6/n-3 polyunsaturated fatty acid ratio extended by 1.00 and 1.19 units in BM and TM, respectively. Dependences of n-6/n-3 ratio on the level of Atalante oil were expressed by equations of convex parabolas with minima at the level of oil 5.8 and 5.9% for BM and TM, respectively. By means of the inclusion of linseed oil with a high content of &alpha;-linolenic acid in the feed mixture it would be possible to produce poultry meat as a functional food with a very narrow ratio of n-6/n-3 polyunsaturated fatty acids.


Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1428
Author(s):  
Marine Remize ◽  
Frédéric Planchon ◽  
Ai Ning Loh ◽  
Fabienne Le Grand ◽  
Christophe Lambert ◽  
...  

The synthetic pathways responsible for the production of the polyunsaturated fatty acids 22:6n-3 and 20:5n-3 were studied in the Dinophyte Alexandrium minutum. The purpose of this work was to follow the progressive incorporation of an isotopic label (13CO2) into 11 fatty acids to better understand the fatty acid synthesis pathways in A. minutum. The Dinophyte growth was monitored for 54 h using high-frequency sampling. A. minutum presented a growth in two phases. A lag phase was observed during the first 30 h of development and had been associated with the probable temporary encystment of Dinophyte cells. An exponential growth phase was then observed after t30. A. minutum rapidly incorporated 13C into 22:6n-3, which ended up being the most 13C-enriched polyunsaturated fatty acid (PUFA) in this experiment, with a higher 13C atomic enrichment than 18:4n-3, 18:5n-3, 20:5n-3, and 22:5n-3. Overall, the 13C atomic enrichment (AE) was inversely proportional to number of carbons in n-3 PUFA. C18 PUFAs, 18:4n-3, and 18:5n-3, were indeed among the least 13C-enriched FAs during this experiment. They were assumed to be produced by the n-3 PUFA pathway. However, they could not be further elongated or desaturated to produce n-3 C20-C22 PUFA, because the AEs of the n-3 C18 PUFAs were lower than those of the n-3 C20-C22 PUFAs. Thus, the especially high atomic enrichment of 22:6n-3 (55.8% and 54.9% in neutral lipids (NLs) and polar lipids (PLs), respectively) led us to hypothesize that this major PUFA was synthesized by an O2-independent Polyketide Synthase (PKS) pathway. Another parallel PKS, independent of the one leading to 22:6n-3, was also supposed to produce 20:5n-3. The inverse order of the 13C atomic enrichment for n-3 PUFAs was also suspected to be related to the possible β-oxidation of long-chain n-3 PUFAs occurring during A. minutum encystment.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Alexander M. Wathne ◽  
Hanne Devle ◽  
Carl Fredrik Naess-Andresen ◽  
Dag Ekeberg

Fatty acid (FA) profiles of the species Tettigonia viridissima, Chorthippus biguttulus, and Chorthippus brunneus were determined and quantitated. Extracted lipids were derivatized into FA methyl esters (FAMEs) prior to analysis by GC-MS. A total of 37 different FAs were identified in T. viridissima, yielding a total FA content of 10.4 g/100 g of dry matter. The contents of saturated FAs, monounsaturated FAs, and polyunsaturated FAs were 31.1, 35.9, and 33.0%, respectively. Lipids from T. viridissima were also fractioned into neutral lipids, free fatty acids, and polar lipids by offline solid phase extraction. For C. brunneus and C. biguttulus, 33 FAs were identified, yielding a total FA content of 6.14 g/100 g of dry matter. SFAs, MUFAs, and PUFAs, respectively, constituted 32.7, 25.1, and 42.1% of the total FA content. The contents of MUFAs, PUFAs, n-3 FAs, and n-6 FAs of each species, and the n-6/n-3 ratio, were subsequently discussed.


2008 ◽  
Vol 14 (2) ◽  
pp. 127-137 ◽  
Author(s):  
M.R. Ramírez ◽  
R. Cava

The changes of the fatty acid (FA) profile of 2 muscles Longissimus dorsi and Biceps femoris from 3 Iberian × Duroc genotypes were studied: GEN1: ♂ Iberian × ♀ Duroc1, GEN2: ♂ Duroc1 × ♀ Iberian; GEN3: ♂ Duroc2 × ♀ Iberian. GEN1 and GEN2 are reciprocal crosses while the difference between GEN2 and GEN3 is the Duroc sire line. The genotype Duroc1 was selected for the production of dry-cured meat products while the genotype Duroc2 was selected for meat production. Longissimus dorsi and Biceps femoris BF from the reciprocal cross showed similar changes in FAs profile after refrigerated storage. However, the Duroc sire line affected the FA profiles of intramuscular fat (IMF) and lipid fractions since some differences were found between GEN2 and GEN3. Meat from GEN3 had the highest level of polyunsaturated fatty acids (PUFA) in IMF and lipid fractions as well as the lowest rate of plasmalogens in polar lipid fraction. After storage, meat from GEN3 showed an increase of long chain PUFA in free fatty acids fraction and the highest increase in the ratio DMA/FA [(dimethylacetals/FAs) × 100] after the refrigerated storage, which was indicative of a higher deterioration of this genotype. Therefore, the crossbreeding of Iberian pigs with Duroc selected genotypes (Duroc2) could affect the changes in the FAs profile of meat under refrigerated storage.


1998 ◽  
Vol 72 (2) ◽  
pp. 133-141 ◽  
Author(s):  
R.A. Holz ◽  
D.J. Wright ◽  
R.N. Perry

AbstractThe lipid composition of three batches of single generation cysts of Globodera rostochiensis, stored dry at 4°C for 1,7 and 13 years, comprised 81%, 74% and 53% neutral lipids, 14%, 18% and 27% non-acidic phospholipids and 5%, 8% and 20% free fatty acids, respectively. Lipids in eggs from two batches of G. pallida cysts, stored for 3 and 7 years, comprised 80% and 67% neutral lipids, 15% and 23% non-acidic phospholipids and 5% and 10% free fatty acids, respectively. All batches contained the same fatty acids which were dominated by C18:l, C20:l and C20:4. The fatty acid profiles of hatched J2 of G. rostochiensis from two batches, stored for 1 and 9 years, differed only in their free fatty acid fractions. Thus, while it is not possible to determine the age of cysts by their fatty acid profile, it may be possible to use the relative amounts of the main lipid classes as an indicator of age. Four batches of hatched J2 of G. pallida were investigated, with sample A hatched during the second week in potato root diffusate, B during week 3, C during week 4 and D during weeks 5 and 6 and stored for 3.5 days (on average) after hatching. Total lipid content was 27.2%, 31.5%, 18.5% and 6.3% of the dry weight for A, B, C and D, respectively. In the neutral lipid fraction of D an increase in C18:l and to a lesser extent C18:2 was observed. In the free fatty acid fraction of sample D, the percentages of C18:l, C18:2 and C18:3 were greater but the percentages of C20:3 and C20:4 were smaller compared with sample C. Fresh early hatched J2 of G. rostochiensis were compared with later hatched and stored (for 13 days on average) individuals for their lipid content and fatty acid composition. The lipid content was 26.1% and 11.4% in fresh and stored J2, respectively. Total lipid consisted of 77% and 70% neutral lipid, 18% and 26% non-acidic phospholipid and 6% and 4% free fatty acid in fresh and stored J2, respectively. In the neutral lipid fraction of stored J2 C18:l, C16:0 and C18:0 increased, whereas C20:4, C20:l and C20:3 decreased. Therefore, both neutral lipid and free fatty acid fractions showed changes in their fatty acid profiles after long delayed hatching and/or storage in both PCN species.


2020 ◽  
Vol 32 (6) ◽  
pp. 4251-4262
Author(s):  
Lena Foseid ◽  
Ingeborg Natvik ◽  
Hanne Devle ◽  
Dag Ekeberg

AbstractThe fatty acid profiles of the three lipid fractions, neutral lipids (NL), free fatty acids and polar lipids (PL), from the macroalgae Palmaria palmata (wild), Alaria esculenta (cultivated) and Saccharina latissima (cultivated) were studied in light of dietary important fatty acids. Blade and stipe from the macroalgae were collected at the end of the growth season (May/June) at Frøya (Trøndelag, Norway). A total of 51 fatty acids were identified in the algae, including several fatty acids novel to one or more of the algae. The NL and PL fractions of P. palmata were the most promising from a health perspective, due to a high content of eicosapentaenoic acid (10.1 ± 0.5% and 6.6 ± 0.1%, respectively) and no trans-fatty acids. In addition, these fractions had very low omega-6/omega-3 ratios (< 0.1) and can therefore be beneficial for balancing the omega-6/omega-3 ratio in the diet. The NL fraction of A. esculenta had the highest content of monounsaturated- and polyunsaturated fatty acids (20.9 ± 1.4 and 21.8 ± 1.9% of alga, respectively), as well as the highest content of the two essential fatty acids, linoleic acid (5.3 ± 0.4% of alga) and alpha-linolenic acid (2.4 ± 0.2% of alga). Indices related to risk factors for coronary heart disease were most favourable in the NL fraction of S. latissima and the NL and PL fractions of A. esculenta.


Sign in / Sign up

Export Citation Format

Share Document