scholarly journals Feature Extraction of Ship Radiated Noise Based on Permutation Entropy of the Intrinsic Mode Function with the Highest Energy

Author(s):  
Yu-Xing Li ◽  
Ya-An Li ◽  
Zhe Chen ◽  
Xiao Chen

In order to solve the problem of feature extraction of underwater acoustic signals in complex ocean environment, a new method for feature extraction from ship radiated noise is presented based on empirical mode decomposition theory and permutation entropy. It analyzes the separability for permutation entropies of the intrinsic mode functions of three types of ship radiated noise signals, and discusses the permutation entropy of the intrinsic mode function with the highest energy. In this study, ship radiated noise signals measured from three types of ships are decomposed into a set of intrinsic mode functions with empirical mode decomposition method. Then, the permutation entropies of all intrinsic mode functions are calculated with appropriate parameters. The permutation entropies are obviously different in the intrinsic mode functions with the highest energy, thus, the permutation entropy of the intrinsic mode function with the highest energy is regarded as a new characteristic parameter to extract the feature of ship radiated noise. After that, the characteristic parameters, namely, the energy difference between high and low frequency, permutation entropy, and multi-scale permutation entropy, are compared with the permutation entropy of the intrinsic mode function with the highest energy. It is discovered that the four characteristic parameters are at the same level for similar ships, however, there are differences in the parameters for different types of ships. The results demonstrate that the permutation entropy of the intrinsic mode function with the highest energy is better in separability as the characteristic parameter than the other three parameters by comparing their fluctuation ranges and the average values of the four characteristic parameters. Hence, the feature of ship radiated noise can be extracted efficiently with the method.

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 112
Author(s):  
Hamada Esmaiel ◽  
Dongri Xie ◽  
Zeyad A. H. Qasem ◽  
Haixin Sun ◽  
Jie Qi ◽  
...  

Due to the complexity and unique features of the hydroacoustic channel, ship-radiated noise (SRN) detected using a passive sonar tends mostly to distort. SRN feature extraction has been proposed to improve the detected passive sonar signal. Unfortunately, the current methods used in SRN feature extraction have many shortcomings. Considering this, in this paper we propose a new multi-stage feature extraction approach to enhance the current SRN feature extractions based on enhanced variational mode decomposition (EVMD), weighted permutation entropy (WPE), local tangent space alignment (LTSA), and particle swarm optimization-based support vector machine (PSO-SVM). In the proposed method, first, we enhance the decomposition operation of the conventional VMD by decomposing the SRN signal into a finite group of intrinsic mode functions (IMFs) and then calculate the WPE of each IMF. Then, the high-dimensional features obtained are reduced to two-dimensional ones by using the LTSA method. Finally, the feature vectors are fed into the PSO-SVM multi-class classifier to realize the classification of different types of SRN sample. The simulation and experimental results demonstrate that the recognition rate of the proposed method overcomes the conventional SRN feature extraction methods, and it has a recognition rate of up to 96.6667%.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 503
Author(s):  
Dongri Xie ◽  
Shaohua Hong ◽  
Chaojun Yao

The complex and changeable marine environment surrounded by a variety of noise, including sounds of marine animals, industrial noise, traffic noise and the noise formed by molecular movement, not only interferes with the normal life of residents near the port, but also exerts a significant influence on feature extraction of ship-radiated noise (S-RN). In this paper, a novel feature extraction technique for S-RN signals based on optimized variational mode decomposition (OVMD), permutation entropy (PE), and normalized Spearman correlation coefficient (NSCC) is proposed. Firstly, with the mode number determined by reverse weighted permutation entropy (RWPE), OVMD decomposes the target signal into a set of intrinsic mode functions (IMFs). The PE of all the IMFs and SCC between each IMF with the raw signal are then calculated, respectively. Subsequently, feature parameters are extracted through the sum of PE weighted by NSCC for the IMFs. Lastly, the obtained feature vectors are input into the support vector machine multi-class classifier (SVM) to discriminate various types of ships. Experimental results indicate that five kinds of S-RN samples can be accurately identified with a recognition rate of 94% by the proposed scheme, which is higher than other previously published methods. Hence, the proposed method is more advantageous in practical applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Rong Jia ◽  
Fuqi Ma ◽  
Hua Wu ◽  
Xingqi Luo ◽  
Xiping Ma

To accurately extract the fault characteristics of vibration signals of rotating machinery is of great significance to the unit online monitoring and evaluation. However, because the current feature extraction methods are mainly for single channel, the results of feature extraction are often inaccurate. To this end, a coupling fault feature extraction method based on bivariate empirical mode decomposition (BEMD) and full spectrum is proposed for rotating machinery. Firstly, the two-dimensional orthogonal signal obtained by orthogonal sampling technique is decomposed by bivariate empirical mode decomposition to obtain the intrinsic mode function with phase information. In order to obtain the sensitive modal components, the sensitivity coefficients are constructed on the basis of mutual information. Then, the sensitivity coefficient of each intrinsic mode function is calculated, and the intrinsic mode function with the larger sensitive coefficient is selected as the sensitive component. Finally, the full spectrum of the sensitive component is obtained using the full vector envelope technique, so as to get a comprehensive and accurate characteristic component. The results of simulations experiment and an application example show that this method can extract the fault characteristic component of the rotating machinery comprehensively and accurately. It is of great significance to realize the accurate diagnosis of coupling faults of rotating machinery.


Author(s):  
Zhifeng Liu ◽  
Bing Luo ◽  
Wentong Yang ◽  
Ligang Cai ◽  
Jingying Zhang

Complex nonlinear and nonstationary signals can be adaptively analyzed by the Hilbert–Huang transform through empirical mode decomposition and the Hilbert transform to generate the instantaneous energy. The instantaneous energy was able to display the local characteristics of the signals and had good time–frequency analysis capability, it is therefore widely applied to the analysis of vibration signals in the field of gear fault diagnosis. However, only a few extracted intrinsic mode functions through empirical mode decomposition can reflect fault feature or closely related to the faults but others are irrelevant. Therefore, the fault feature of the instantaneous energy for all intrinsic mode functions was not obvious and the accuracy of diagnosis was low. Aimed at solving this problem, a fault leading rate evaluation algorithm was proposed that can select those intrinsic mode functions, which reflect fault features (it was called the dominant intrinsic mode function) from all intrinsic mode functions. In the paper, this algorithm was applied to gear fault feature extraction. By calculating the instantaneous energy of the dominant intrinsic mode function the method could accurately extract gear fault feature and improve the accuracy of diagnosis. Both simulated signals and experimental signals of a Klingelnberg bevel gear were analyzed to verify the effectiveness and correctness of the algorithm.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 620
Author(s):  
Dongri Xie ◽  
Haixin Sun ◽  
Jie Qi

Due to the existence of marine environmental noise, coupled with the instability of underwater acoustic channel, ship-radiated noise (SRN) signals detected by sensors tend to suffer noise pollution as well as distortion caused by the transmission medium, making the denoising of the raw detected signals the new focus in the field of underwater acoustic target recognition. In view of this, this paper presents a novel hybrid feature extraction scheme integrating improved variational mode decomposition (IVMD), normalized maximal information coefficient (norMIC) and permutation entropy (PE) for SRN signals. Firstly, the IVMD method is employed to decompose the SRN signals into a number of finite intrinsic mode functions (IMFs). The noise IMFs are then filtered out by a denoising method before PE extraction. Next, the MIC between each retained IMF and the raw SRN signal and PE of retained IMFs are calculated, respectively. After this, the norMICs are used to weigh the PE values of the retained IMFs and the sum of the weighted PE results is regarded as the classification parameter. Finally, the feature vectors are fed into the particle swarm optimization-based support vector machine multi-class classifier (PSO-SVM) to identify different types of SRN samples. The experimental results have indicated that the classification accuracy of the proposed method is as high as 99.1667%, which is much higher than that of other currently existing methods. Hence, the method proposed in this paper is more suitable for feature extraction of SRN signals in practical application.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chen-yang Ma ◽  
Li Wu ◽  
Miao Sun ◽  
Qing Yuan

The traditional empirical mode decomposition method cannot accurately extract the time-frequency characteristic parameters contained in the noisy seismic monitoring signals. In this paper, the time-frequency analysis model of CEEMD-MPE-HT is established by introducing the multiscale permutation entropy (MPE), combining with the optimized empirical mode decomposition (CEEMD) and Hilbert transform (HT). The accuracy of the model is verified by the simulation signal mixed with noise. Based on the project of Loushan two-to-four in situ expansion tunnel, a CEEMD-MPE-HT model is used to extract and analyze the time-frequency characteristic parameters of blasting seismic signals. The results show that the energy of the seismic wave signal is mainly concentrated in the frequency band above 100 Hz, while the natural vibration frequency of the adjacent existing tunnel is far less than this frequency band, and the excavation blasting of the tunnel will not cause the resonance of the adjacent existing tunnel.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Liye Zhao ◽  
Wei Yu ◽  
Ruqiang Yan

This paper presents an improved gearbox fault diagnosis approach by integrating complementary ensemble empirical mode decomposition (CEEMD) with permutation entropy (PE). The presented approach identifies faults appearing in a gearbox system based on PE values calculated from selected intrinsic mode functions (IMFs) of vibration signals decomposed by CEEMD. Specifically, CEEMD is first used to decompose vibration signals characterizing various defect severities into a series of IMFs. Then, filtered vibration signals are obtained from appropriate selection of IMFs, and correlation coefficients between the filtered signal and each IMF are used as the basis for useful IMFs selection. Subsequently, PE values of those selected IMFs are utilized as input features to a support vector machine (SVM) classifier for characterizing the defect severity of a gearbox. Case study conducted on a gearbox system indicates the effectiveness of the proposed approach for identifying the gearbox faults.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 359 ◽  
Author(s):  
Yuxing Li ◽  
Xiao Chen ◽  
Jing Yu ◽  
Xiaohui Yang ◽  
Huijun Yang

The data-driven method is an important tool in the field of underwater acoustic signal processing. In order to realize the feature extraction of ship-radiated noise (S-RN), we proposed a data-driven optimization method called improved variational mode decomposition (IVMD). IVMD, as an improved method of variational mode decomposition (VMD), solved the problem of choosing decomposition layers for VMD by using a frequency-aided method. Furthermore, a novel method of feature extraction for S-RN, which combines IVMD and sample entropy (SE), is put forward in this paper. In this study, four types of S-RN signals are decomposed into a group of intrinsic mode functions (IMFs) by IVMD. Then, SEs of all IMFs are calculated. SEs are different in the maximum energy IMFs (EIMFs), thus, SE of the EIMF is seen as a novel feature for S-RN. To verify the effectiveness of the proposed method, a comparison has been conducted by comparing features of center frequency and SE of the EIMF by IVMD, empirical mode decomposition (EMD) and ensemble EMD (EEMD). The analysis results show that the feature of S-RN can be obtain efficiently and accurately by using the proposed method.


Sign in / Sign up

Export Citation Format

Share Document