scholarly journals Multi-Stage Feature Extraction and Classification for Ship-Radiated Noise

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 112
Author(s):  
Hamada Esmaiel ◽  
Dongri Xie ◽  
Zeyad A. H. Qasem ◽  
Haixin Sun ◽  
Jie Qi ◽  
...  

Due to the complexity and unique features of the hydroacoustic channel, ship-radiated noise (SRN) detected using a passive sonar tends mostly to distort. SRN feature extraction has been proposed to improve the detected passive sonar signal. Unfortunately, the current methods used in SRN feature extraction have many shortcomings. Considering this, in this paper we propose a new multi-stage feature extraction approach to enhance the current SRN feature extractions based on enhanced variational mode decomposition (EVMD), weighted permutation entropy (WPE), local tangent space alignment (LTSA), and particle swarm optimization-based support vector machine (PSO-SVM). In the proposed method, first, we enhance the decomposition operation of the conventional VMD by decomposing the SRN signal into a finite group of intrinsic mode functions (IMFs) and then calculate the WPE of each IMF. Then, the high-dimensional features obtained are reduced to two-dimensional ones by using the LTSA method. Finally, the feature vectors are fed into the PSO-SVM multi-class classifier to realize the classification of different types of SRN sample. The simulation and experimental results demonstrate that the recognition rate of the proposed method overcomes the conventional SRN feature extraction methods, and it has a recognition rate of up to 96.6667%.

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 503
Author(s):  
Dongri Xie ◽  
Shaohua Hong ◽  
Chaojun Yao

The complex and changeable marine environment surrounded by a variety of noise, including sounds of marine animals, industrial noise, traffic noise and the noise formed by molecular movement, not only interferes with the normal life of residents near the port, but also exerts a significant influence on feature extraction of ship-radiated noise (S-RN). In this paper, a novel feature extraction technique for S-RN signals based on optimized variational mode decomposition (OVMD), permutation entropy (PE), and normalized Spearman correlation coefficient (NSCC) is proposed. Firstly, with the mode number determined by reverse weighted permutation entropy (RWPE), OVMD decomposes the target signal into a set of intrinsic mode functions (IMFs). The PE of all the IMFs and SCC between each IMF with the raw signal are then calculated, respectively. Subsequently, feature parameters are extracted through the sum of PE weighted by NSCC for the IMFs. Lastly, the obtained feature vectors are input into the support vector machine multi-class classifier (SVM) to discriminate various types of ships. Experimental results indicate that five kinds of S-RN samples can be accurately identified with a recognition rate of 94% by the proposed scheme, which is higher than other previously published methods. Hence, the proposed method is more advantageous in practical applications.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 468 ◽  
Author(s):  
Dongri Xie ◽  
Hamada Esmaiel ◽  
Haixin Sun ◽  
Jie Qi ◽  
Zeyad A. H. Qasem

Due to the complexity and variability of underwater acoustic channels, ship-radiated noise (SRN) detected using the passive sonar is prone to be distorted. The entropy-based feature extraction method can improve this situation, to some extent. However, it is impractical to directly extract the entropy feature for the detected SRN signals. In addition, the existing conventional methods have a lack of suitable de-noising processing under the presence of marine environmental noise. To this end, this paper proposes a novel feature extraction method based on enhanced variational mode decomposition (EVMD), normalized correlation coefficient (norCC), permutation entropy (PE), and the particle swarm optimization-based support vector machine (PSO-SVM). Firstly, EVMD is utilized to obtain a group of intrinsic mode functions (IMFs) from the SRN signals. The noise-dominant IMFs are then eliminated by a de-noising processing prior to PE calculation. Next, the correlation coefficient between each signal-dominant IMF and the raw signal and PE of each signal-dominant IMF are calculated, respectively. After this, the norCC is used to weigh the corresponding PE and the sum of these weighted PE is considered as the final feature parameter. Finally, the feature vectors are fed into the PSO-SVM multi-class classifier to classify the SRN samples. The experimental results demonstrate that the recognition rate of the proposed methodology is up to 100%, which is much higher than the currently existing methods. Hence, the method proposed in this paper is more suitable for the feature extraction of SRN signals.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 620
Author(s):  
Dongri Xie ◽  
Haixin Sun ◽  
Jie Qi

Due to the existence of marine environmental noise, coupled with the instability of underwater acoustic channel, ship-radiated noise (SRN) signals detected by sensors tend to suffer noise pollution as well as distortion caused by the transmission medium, making the denoising of the raw detected signals the new focus in the field of underwater acoustic target recognition. In view of this, this paper presents a novel hybrid feature extraction scheme integrating improved variational mode decomposition (IVMD), normalized maximal information coefficient (norMIC) and permutation entropy (PE) for SRN signals. Firstly, the IVMD method is employed to decompose the SRN signals into a number of finite intrinsic mode functions (IMFs). The noise IMFs are then filtered out by a denoising method before PE extraction. Next, the MIC between each retained IMF and the raw SRN signal and PE of retained IMFs are calculated, respectively. After this, the norMICs are used to weigh the PE values of the retained IMFs and the sum of the weighted PE results is regarded as the classification parameter. Finally, the feature vectors are fed into the particle swarm optimization-based support vector machine multi-class classifier (PSO-SVM) to identify different types of SRN samples. The experimental results have indicated that the classification accuracy of the proposed method is as high as 99.1667%, which is much higher than that of other currently existing methods. Hence, the method proposed in this paper is more suitable for feature extraction of SRN signals in practical application.


Author(s):  
Yu-Xing Li ◽  
Ya-An Li ◽  
Zhe Chen ◽  
Xiao Chen

In order to solve the problem of feature extraction of underwater acoustic signals in complex ocean environment, a new method for feature extraction from ship radiated noise is presented based on empirical mode decomposition theory and permutation entropy. It analyzes the separability for permutation entropies of the intrinsic mode functions of three types of ship radiated noise signals, and discusses the permutation entropy of the intrinsic mode function with the highest energy. In this study, ship radiated noise signals measured from three types of ships are decomposed into a set of intrinsic mode functions with empirical mode decomposition method. Then, the permutation entropies of all intrinsic mode functions are calculated with appropriate parameters. The permutation entropies are obviously different in the intrinsic mode functions with the highest energy, thus, the permutation entropy of the intrinsic mode function with the highest energy is regarded as a new characteristic parameter to extract the feature of ship radiated noise. After that, the characteristic parameters, namely, the energy difference between high and low frequency, permutation entropy, and multi-scale permutation entropy, are compared with the permutation entropy of the intrinsic mode function with the highest energy. It is discovered that the four characteristic parameters are at the same level for similar ships, however, there are differences in the parameters for different types of ships. The results demonstrate that the permutation entropy of the intrinsic mode function with the highest energy is better in separability as the characteristic parameter than the other three parameters by comparing their fluctuation ranges and the average values of the four characteristic parameters. Hence, the feature of ship radiated noise can be extracted efficiently with the method.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1215 ◽  
Author(s):  
Zhaoxi Li ◽  
Yaan Li ◽  
Kai Zhang ◽  
Jianli Guo

Ship-radiated noise signal has a lot of nonlinear, non-Gaussian, and nonstationary information characteristics, which can reflect the important signs of ship performance. This paper proposes a novel feature extraction technique for ship-radiated noise based on improved intrinsic time-scale decomposition (IITD) and multiscale dispersion entropy (MDE). The proposed feature extraction technique is named IITD-MDE. First, IITD is applied to decompose the ship-radiated noise signal into a series of intrinsic scale components (ISCs). Then, we select the ISC with the main information through the correlation analysis, and calculate the MDE value as feature vectors. Finally, the feature vectors are input into the support vector machine (SVM) for ship classification. The experimental results indicate that the recognition rate of the proposed technique reaches 86% accuracy. Therefore, compared with the other feature extraction methods, the proposed method provides a new solution for classifying different types of ships effectively.


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 176 ◽  
Author(s):  
Guohui Li ◽  
Zhichao Yang ◽  
Hong Yang

To improve the recognition accuracy of ship-radiated noise, a feature extraction method based on regenerated phase-shifted sinusoid-assisted empirical mode decomposition (RPSEMD), mutual information (MI), and differential symbolic entropy (DSE) is proposed in this paper. RPSEMD is an improved empirical mode decomposition (EMD) that alleviates the mode mixing problem of EMD. DSE is a new tool to quantify the complexity of nonlinear time series. It not only has high computational efficiency, but also can measure the nonlinear complexity of short time series. Firstly, the ship-radiated noise is decomposed into a series of intrinsic mode functions (IMFs) by RPSEMD, and the DSE of each IMF is calculated. Then, the MI between each IMF and the original signal is calculated; the sum of MIs is taken as the denominator; and each normalized MI (norMI) is obtained. Finally, each norMI is used as the weight coefficient to weight the corresponding DSE, and the weighted DSE (WDSE) is obtained. The WDSEs are sent into the support vector machine (SVM) classifier to classify and recognize three types of ship-radiated noise. The experimental results demonstrate that the recognition rate of the proposed method reaches 98.3333%. Consequently, the proposed WDSE method can effectively achieve the classification of ships.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Bo Wu ◽  
Zhe Tong ◽  
...  

Feature extraction is one of the most difficult aspects of mechanical fault diagnosis, and it is directly related to the accuracy of bearing fault diagnosis. In this study, improved permutation entropy (IPE) is defined as the feature for bearing fault diagnosis. In this method, ensemble empirical mode decomposition (EEMD), a self-adaptive time-frequency analysis method, is used to process the vibration signals, and a set of intrinsic mode functions (IMFs) can thus be obtained. A feature extraction strategy based on statistical analysis is then presented for IPE, where the so-called optimal number of permutation entropy (PE) values used for an IPE is adaptively selected. The obtained IPE-based samples are then input to a support vector machine (SVM) model. Subsequently, a trained SVM can be constructed as the classifier for bearing fault diagnosis. Finally, experimental vibration signals are applied to validate the effectiveness of the proposed method, and the results show that the proposed method can effectively and accurately diagnose bearing faults, such as inner race faults, outer race faults, and ball faults.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Liye Zhao ◽  
Wei Yu ◽  
Ruqiang Yan

This paper presents an improved gearbox fault diagnosis approach by integrating complementary ensemble empirical mode decomposition (CEEMD) with permutation entropy (PE). The presented approach identifies faults appearing in a gearbox system based on PE values calculated from selected intrinsic mode functions (IMFs) of vibration signals decomposed by CEEMD. Specifically, CEEMD is first used to decompose vibration signals characterizing various defect severities into a series of IMFs. Then, filtered vibration signals are obtained from appropriate selection of IMFs, and correlation coefficients between the filtered signal and each IMF are used as the basis for useful IMFs selection. Subsequently, PE values of those selected IMFs are utilized as input features to a support vector machine (SVM) classifier for characterizing the defect severity of a gearbox. Case study conducted on a gearbox system indicates the effectiveness of the proposed approach for identifying the gearbox faults.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 359 ◽  
Author(s):  
Yuxing Li ◽  
Xiao Chen ◽  
Jing Yu ◽  
Xiaohui Yang ◽  
Huijun Yang

The data-driven method is an important tool in the field of underwater acoustic signal processing. In order to realize the feature extraction of ship-radiated noise (S-RN), we proposed a data-driven optimization method called improved variational mode decomposition (IVMD). IVMD, as an improved method of variational mode decomposition (VMD), solved the problem of choosing decomposition layers for VMD by using a frequency-aided method. Furthermore, a novel method of feature extraction for S-RN, which combines IVMD and sample entropy (SE), is put forward in this paper. In this study, four types of S-RN signals are decomposed into a group of intrinsic mode functions (IMFs) by IVMD. Then, SEs of all IMFs are calculated. SEs are different in the maximum energy IMFs (EIMFs), thus, SE of the EIMF is seen as a novel feature for S-RN. To verify the effectiveness of the proposed method, a comparison has been conducted by comparing features of center frequency and SE of the EIMF by IVMD, empirical mode decomposition (EMD) and ensemble EMD (EEMD). The analysis results show that the feature of S-RN can be obtain efficiently and accurately by using the proposed method.


2014 ◽  
Vol 14 (04) ◽  
pp. 1450046 ◽  
Author(s):  
WENYING ZHANG ◽  
XINGMING GUO ◽  
ZHIHUI YUAN ◽  
XINGHUA ZHU

Analysis of heart sound is of great importance to the diagnosis of heart diseases. Most of the feature extraction methods about heart sound have focused on linear time-variant or time-invariant models. While heart sound is a kind of highly nonstationary and nonlinear vibration signal, traditional methods cannot fully reveal its essential properties. In this paper, a novel feature extraction approach is proposed for heart sound classification and recognition. The ensemble empirical mode decomposition (EEMD) method is used to decompose the heart sound into a finite number of intrinsic mode functions (IMFs), and the correlation dimensions of the main IMF components (IMF1~IMF4) are calculated as feature set. Then the classical Binary Tree Support Vector Machine (BT-SVM) classifier is employed to classify the heart sounds which include the normal heart sounds (NHSs) and three kinds of abnormal signals namely mitral stenosis (MT), ventricular septal defect (VSD) and aortic stenosis (AS). Finally, the performance of the new feature set is compared with the correlation dimensions of original signals and the main IMF components obtained by the EMD method. The results showed that, for NHSs, the feature set proposed in this paper performed the best with recognition rate of 98.67%. For the abnormal signals, the best recognition rate of 91.67% was obtained. Therefore, the proposed feature set is more superior to two comparative feature sets, which has potential application in the diagnosis of cardiovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document