scholarly journals Effects of Domain Boundaries on the Diffraction Patterns of One Dimensional Structures

Author(s):  
Frederic Timmer ◽  
Joachim Wollschläger

Motivated by diffraction experiments on the 23×3R30∘ reconstructed Si(111) due to deposition of rare earth elements (Dy, Tb) and silicide formation we analyse the splitting and non-splitting of superstructure spots. For this purpose, we model diffraction patterns for one dimensional structures generated by the binary surface technique and use supercell models to keep the analysis simple. Diffraction pattern are calculated in the framework of the kinematical diffraction theory and they are analyzed as a function of the domains and domain boundaries. Basic properties of the diffraction pattern are analyzed for model systems of a two-fold and a three-fold periodicity. The rules derived from these calculations are applied to the "real-world" system of Si(111)-(23×3R30∘)-RESi2 (RE = Dy or Tb). Depending on the combination of domains and domain boundaries of different types a plethora of different features are observed in the diffraction patterns. These are analyzed to determine the sizes of both domain boundaries and domains from experimentally observed splitting of specific superstructure spots.

1996 ◽  
Vol 460 ◽  
Author(s):  
X. D. Zhang ◽  
J. M. K. Wiezorek ◽  
M. J. Kaufman ◽  
M. H. Loretto ◽  
H. L. Fraser

ABSTRACTThe microstructure of a massively transformed Ti-49at.%Al alloy has been studied by conventional transmission electron microscopy (CTEM) and high resolution TEM (HREM). A high density of planar defects, namely complex anti-phase domain boundaries (CAPDB) and thermal micro-twins (TMT) have been observed. CTEM images and diffraction patterns showed that two anti-phase related γ-matrix domains were generally separated by a thin layer of a 90°-domain, for which the c-axis is rotated 90° over a common cube axis with respect to those of the γ-matrix domains. HREM confirmed the presence of two crystallographically different types of 90°-do-mains being associated with the CAPDB. Furthermore, interactions between the CAPDB and TMT have been observed. Local faceting of the generally wavy, non-crystallographic CAPDB parallel to the {111}-twinning planes occurred due to interaction with the TMT. The relaxation of the CAPDB onto {111} required diffusion which is proposed to be enhanced locally in the presence of the dislocations associated with the formation of TMT during the massive transformation.


Author(s):  
Glen B. Haydon

Analysis of light optical diffraction patterns produced by electron micrographs can easily lead to much nonsense. Such diffraction patterns are referred to as optical transforms and are compared with transforms produced by a variety of mathematical manipulations. In the use of light optical diffraction patterns to study periodicities in macromolecular ultrastructures, a number of potential pitfalls have been rediscovered. The limitations apply to the formation of the electron micrograph as well as its analysis.(1) The high resolution electron micrograph is itself a complex diffraction pattern resulting from the specimen, its stain, and its supporting substrate. Cowley and Moodie (Proc. Phys. Soc. B, LXX 497, 1957) demonstrated changing image patterns with changes in focus. Similar defocus images have been subjected to further light optical diffraction analysis.


Author(s):  
R. Stevenson

A study has been made of the morphology and crystallography of particulate emissions from indirect injection diesel engines. This particulate matter consists substantially of carbon (although hydrocarbons can be extracted with solvents). Samples were collected in a diluted exhaust stream on amorphous carbon films and examined in a JEM-200C electron microscope operated in the TEM mode with an accelerating voltage of 200 KV.The morphology of the diesel particles, as shown in Fig. 1, markedly resembles carbon blacks and consists of an agglomeration of quasispherical subunits arranged in chains or clusters. Only limited changes in morphology were observed as the number of subunits in the particle increased (although larger particles tended to be more cluster-like than the extended chain shown in Fig. 1). However, a dramatic effect of the number of subunits was observed on the character of the diffraction pattern. Smaller particles yielded a diffraction pattern consisting of very diffuse rings typical of turbostratic carbon; the diffraction patterns from the larger particles, however, although qualitatively similar, exhibited much sharper and less diffuse ring patterns.


Author(s):  
Ian M. Anderson ◽  
Arnulf Muan ◽  
C. Barry Carter

Oxide mixtures which feature a coexistence of phases with the wüstite and spinel structures are considered model systems for the study of solid-state reaction kinetics, phase boundaries, and thin-film growth, and such systems are especially suited to TEM studies. (In this paper, the terms “wüstite” and “spinel” will refer to phases of those structure types.) The study of wüstite-spinel coexistence has been limited mostly to systems near their equilibrium condition, where the assumptions of local thermodynamic equilibrium are valid. The cation-excess spinels of the type Ni2(1+x)Ti1-xO4, which reportedly exist only above 1375°C4, provide an excellent system for the study of wüstite-spinel coexistence under highly nonequilibrium conditions. The nature of these compounds has been debated in the literature. X-ray and neutron powder diffraction patterns have been used to advocate the existence of a single-phase, non- stoichiometric spinel. TEM studies of the microstructure have been used to suggest equilibrium coexistence of a stoichiometric spinel, Ni2TiO4, and a wüstite phase; this latter study has shown a coexistence of wüstite and spinel phases in specimens thought to have been composed of a single, non- stoichiometric spinel phase. The microstructure and nature of this phase coexistence is the focus of this study. Specimens were prepared by ball-milling a mixture of NiO and TiO2 powders with 10 wt.% TiO2. The mixture was fired in air at 1483°C for 5 days, and then quenched to room temperature. The aggregate thus produced was highly porous, and needed to be infiltrated prior to TEM sample preparation, which was performed using the standard techniques of lapping, dimpling, and ion milling.


2021 ◽  
Author(s):  
Lei Jin ◽  
Nerea Bilbao ◽  
Yang Lv ◽  
Xiao-Ye Wang ◽  
Soltani Paniz ◽  
...  

Graphene nanoribbons (GNRs), quasi-one-dimensional strips of graphene, exhibit a nonzero bandgap due to quantum confinement and edge effects. In the past decade, different types of GNRs with atomically precise structures...


2005 ◽  
Vol 5 (9) ◽  
pp. 1519-1531 ◽  
Author(s):  
Hongwei Song ◽  
Lixin Yu ◽  
LinMei Yang ◽  
Shaozhe Lu

2015 ◽  
Vol 641 ◽  
pp. 286-293
Author(s):  
Beata Leszczyńska-Madej ◽  
Maria W. Richert ◽  
Agnieszka Hotloś ◽  
Jacek Skiba

The present study attempts to apply Equal-Channel Angular Pressing (ECAP) to 99.99% pure copper. ECAP process was realized at room temperature for 4, 8 and 16 passes through route BC using a die having angle of 90°. The microstructure of the samples was investigated by means both light and transmission electron microscopy. Additionally the microhardness was measured and statistical analysis of the grains and subgrains was performed. Based on Kikuchi diffraction patterns misorientation was determined. There were some different types of bands in the microstructure after deformation. The shear bands, bands and in the submicron range the microshear bands and microbands are a characteristic feature of the microstructure of copper. Also characteristic was increasing of the number of bands with increasing of deformation and mutually crossing of the bands. The intersection of a bands and microbands leads to the formation of new grains with the large misorientation angle. The measured grain/subgrain size show, that the grain size is maintained at a similar level after each stage of deformation and is equal to d = 0.25 – 0.32 μm.


Sign in / Sign up

Export Citation Format

Share Document