scholarly journals Circulating Docosahexaenoic Acid Associates with Insulin-Dependent Skeletal Muscle and Whole Body Glucose Uptake in Older Women Born from Normal Weight Mothers

Author(s):  
Robert M. Badeau ◽  
Miikka-Juhani Honka ◽  
Marco Bucci ◽  
Patricia Iozzo ◽  
Johan G. Eriksson ◽  
...  

Background: Obesity among pregnant women is common, and their offspring are predisposed to obesity, insulin resistance, and diabetes. Circulating metabolites that are related to insulin resistance and are associated with this decreased tissue-specific uptake are unknown. Here, we assessed metabolite profiles in elderly women and who were either female offspring from obese mothers (OOM) or offspring of lean mothers (OLM). Metabolic changes were tested for associations with metrics for insulin resistance. Methods: 37 elderly women were separated into an elderly offspring from obese mothers (OOM; n = 17) and elderly offspring from lean/normal weight mothers (OLM; n = 20) groups. We measured plasma metabolites using 1H-NMR and also insulin-dependent tissue specific glucose uptake in skeletal muscle were assessed. Associations were made between metabolites and glucose uptake. Results: Compared to the OLM group, we found that the 22:6 docosahexaenoic acid percentage of the total long chain n-3 fatty acids (DHA/FA) was significantly lower in OOM (P = 0.015). DHA/FA associated significantly to skeletal muscle GU (P = 0.031) and M-value in the OLM group only (P = 0.050). Conclusions: DHA/FA is associated with insulin-dependent skeletal muscle glucose uptake and that this association is significantly weakened in the offspring of obese mothers.

Nutrients ◽  
2017 ◽  
Vol 9 (2) ◽  
pp. 110
Author(s):  
Robert Badeau ◽  
Miikka-Juhani Honka ◽  
Marco Bucci ◽  
Patricia Iozzo ◽  
Johan Eriksson ◽  
...  

2001 ◽  
Vol 281 (1) ◽  
pp. E62-E71 ◽  
Author(s):  
Charles Lavigne ◽  
Frédéric Tremblay ◽  
Geneviève Asselin ◽  
Hélène Jacques ◽  
André Marette

In the present study, we tested the hypothesis that fish protein may represent a key constituent of fish with glucoregulatory activity. Three groups of rats were fed a high-fat diet in which the protein source was casein, fish (cod) protein, or soy protein; these groups were compared with a group of chow-fed controls. High-fat feeding led to severe whole body and skeletal muscle insulin resistance in casein- or soy protein-fed rats, as assessed by the euglycemic clamp technique coupled with measurements of 2-deoxy-d-[3H]glucose uptake rates by individual tissues. However, feeding cod protein fully prevented the development of insulin resistance in high fat-fed rats. These animals exhibited higher rates of insulin-mediated muscle glucose disposal that were comparable to those of chow-fed rats. The beneficial effects of cod protein occurred without any reductions in body weight gain, adipose tissue accretion, or expression of tumor necrosis factor-α in fat and muscle. Moreover, L6 myocytes exposed to cod protein-derived amino acids showed greater rates of insulin-stimulated glucose uptake compared with cells incubated with casein- or soy protein-derived amino acids. These data demonstrate that feeding cod protein prevents obesity-induced muscle insulin resistance in high fat-fed obese rats at least in part through a direct action of amino acids on insulin-stimulated glucose uptake in skeletal muscle cells.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Alba Moreno-Asso ◽  
Luke C McIlvenna ◽  
Rhiannon K Patten ◽  
Andrew J McAinch ◽  
Raymond J Rodgers ◽  
...  

Abstract Polycystic ovary syndrome (PCOS) is the most common female endocrine disorder affecting metabolic, reproductive and mental health of 8-13% of reproductive-age women. Insulin resistance (IR) appears to underpin the pathophysiology of PCOS and is present in approximately 85% of women with PCOS. This underlying IR has been identified as unique from, but synergistic with, obesity-induced IR (1). Skeletal muscle accounts for up to 85% of whole body insulin-stimulated glucose uptake, however, in PCOS this is reduced about 27% when assessed by hyperinsulinemic euglycemic clamp (2). Interestingly, this reduced insulin-stimulated glucose uptake observed in skeletal muscle tissue is not retained in cultured myotubes (3), suggesting that environmental factors may play a role in this PCOS-specific IR. Yet, the molecular mechanisms regulating IR remain unclear (4). Previous work suggested that Transforming Growth Factor Beta (TGFβ) superfamily ligands may be involved in the metabolic morbidity associated with PCOS (5). In this study, we investigated the effects of TGFβ1 (1, 5ng/ml), and the Anti-Müllerian hormone (AMH; 5, 10, 30ng/ml), a novel TGFβ superfamily ligand elevated in women with PCOS, as causal factors of IR in cultured myotubes from women with PCOS (n=10) and healthy controls (n=10). AMH negatively affected glucose uptake and insulin signalling increasing p-IRS1 (ser312) in a dose-dependent manner in myotubes from both women with and without PCOS. AMH did not appear to activate the canonical TGFβ/BMP signalling pathway. Conversely, TGFβ1 had an opposite effect in both PCOS and control myotubes cultures, decreasing phosphorylation of IRS1 (ser312) and enhancing glucose uptake via Smad2/3 signalling. In conclusion, these results suggest that AMH may play a role in skeletal muscle IR observed in PCOS, however, further research is required to elucidate its mechanisms of action and broader impact in this syndrome. References: (1) Stepto et al. Hum Reprod 2013 Mar;28(3):777-784. (2) Cassar et al. Hum Reprod 2016 Nov;31(11):2619-2631. (3) Corbould et al., Am J Physiol-Endoc 2005 May;88(5):E1047-54. (4) Stepto et al. J Clin Endocrinol Metab, 2019 Nov 1;104(11):5372-5381. (5) Raja-Khan et al. Reprod Sci 2014 Jan;21(1):20-31.


1997 ◽  
Vol 272 (2) ◽  
pp. E288-E296 ◽  
Author(s):  
J. K. Kim ◽  
J. H. Youn

To determine whether an impairment of intracellular glucose metabolism causes insulin resistance, we examined the effects of suppression of glycolysis or glycogen synthesis on whole body and skeletal muscle insulin-stimulated glucose uptake during 450-min hyperinsulinemic euglycemic clamps in conscious rats. After the initial 150 min to attain steady-state insulin action, animals received an additional infusion of saline, Intralipid and heparin (to suppress glycolysis), or amylin (to suppress glycogen synthesis) for up to 300 min. Insulin-stimulated whole body glucose fluxes were constant with saline infusion (n = 7). In contrast, Intralipid infusion (n = 7) suppressed glycolysis by approximately 32%, and amylin infusion (n = 7) suppressed glycogen synthesis by approximately 45% within 30 min after the start of the infusions (P < 0.05). The suppression of metabolic fluxes increased muscle glucose 6-phosphate levels (P < 0.05), but this did not immediately affect insulin-stimulated glucose uptake due to compensatory increases in other metabolic fluxes. Insulin-stimulated whole body glucose uptake started to decrease at approximately 60 min and was significantly decreased by approximately 30% at the end of clamps (P < 0.05). Similar patterns of changes in insulin-stimulated glucose fluxes were observed in individual skeletal muscles. Thus the suppression of intracellular glucose metabolism caused decreases in insulin-stimulated glucose uptake through a cellular adaptive mechanism in response to a prolonged elevation of glucose 6-phosphate rather than the classic mechanism involving glucose 6-phosphate inhibition of hexokinase.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A443-A444
Author(s):  
Alba Moreno-Asso ◽  
Luke C McIlvenna ◽  
Rhiannon K Patten ◽  
Andrew J McAinch ◽  
Raymond J Rodgers ◽  
...  

Abstract Polycystic ovary syndrome (PCOS) is the most common female endocrinopathy affecting metabolic and reproductive health of 8–13% of reproductive-age women. Insulin resistance (IR) appears to underpin the pathophysiology of PCOS and is present in approximately 38–95% of women with PCOS. This underlying IR has been identified as unique from, but synergistic with, obesity-induced IR (1). Skeletal muscle accounts for up to 85% of whole-body insulin-stimulated glucose uptake; however, in PCOS this is reduced by about 27% when assessed by a euglycaemic-hyperinsulinaemic clamp (2). Interestingly, this reduced insulin-stimulated glucose uptake observed in skeletal muscle tissue is not retained in cultured myotubes (3), suggesting that in vivo environmental factors may play a role in this PCOS-specific IR. Yet, the molecular mechanisms regulating IR remain unclear (4). A potential environmental mechanism contributing to the development of peripheral IR may be the extracellular matrix remodelling and aberrant transforming growth factor beta (TGFβ) signalling. Previous work demonstrated that TGFβ superfamily ligands are involved in the increased collagen deposition and fibrotic tissue in the ovaries, and suggested that these ligands may be involved in the metabolic morbidity associated with PCOS (5). In this study, we investigated the effects of TGFβ1 (1, 5 ng/ml), and the Anti-Müllerian hormone (AMH; 5, 10, 30 ng/ml), a TGFβ superfamily ligand elevated in women with PCOS, as causal factors of IR in cultured myotubes from women with PCOS (n=5) and healthy controls (n=5). TGFβ1 did not have a significant effect on insulin signalling but induced expression of some ECM related genes and proteins, and increased glucose uptake via Smad2/3 signalling in myotubes from both groups. Conversely, AMH did not appear to activate the TGFβ/Smad signalling pathway and had no significant impact on insulin signalling or glucose uptake in any of the groups. In conclusion, these findings suggest that TGFβ1, but not AMH, may play a role in skeletal muscle ECM remodelling/fibrosis and glucose metabolism in PCOS but does not have a direct effect on insulin signalling pathway. Further research is required to elucidate its contribution to the development of in vivo skeletal muscle IR and broader impact in this syndrome. References: (1) Stepto et al., Hum Reprod 2013 Mar;28(3):777–784. (2) Cassar et al., Hum Reprod 2016 Nov;31(11):2619–2631. (3) Corbould et al., Am J Physiol-Endoc 2005 May;88(5):E1047-54. (4) Stepto et al., J Clin Endocrinol Metab, 2019 Nov 1;104(11):5372–5381. (5) Raja-Khan et al., Reprod Sci 2014 Jan;21(1):20–31.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Vitor Fernandes Martins ◽  
Samuel LaBarge ◽  
Kristoffer Svensson ◽  
Jennifer M Cunliffe ◽  
Dion Banoian ◽  
...  

Abstract Introduction: Akt is a critical mediator of insulin-stimulated glucose uptake in skeletal muscle. The acetyltransferases, E1A binding protein p300 (p300) and cAMP response element-binding protein binding protein (CBP) are phosphorylated and activated by Akt, and p300/CBP can acetylate and inactivate Akt, thus giving rise to a possible Akt-p300/CBP axis. Our objective was to determine the importance of p300 and CBP to skeletal muscle insulin sensitivity. Methods: We used Cre-LoxP methodology to generate mice with a tamoxifen-inducible, conditional knock out of Ep300 and/or Crebbp in skeletal muscle. At 13-15 weeks of age, the knockout was induced via oral gavage of tamoxifen and oral glucose tolerance, ex vivo skeletal muscle insulin sensitivity, and microarray and proteomics analysis were done. Results: Loss of both p300 and CBP in adult mouse skeletal muscle rapidly and severely impairs whole body glucose tolerance and skeletal muscle insulin sensitivity. Furthermore, giving back a single allele of either p300 or CBP rescues both phenotypes. Moreover, the severe insulin resistance in the p300/CBP double knockout mice is accompanied by significant changes in both mRNA and protein expression of transcript/protein networks critical for insulin signaling, GLUT4 trafficking, and metabolism. Lastly, in human skeletal muscle samples, p300 and CBP protein levels correlate significantly and negatively with markers of insulin resistance. Conclusions: p300 and CBP are jointly required for maintaining whole body glucose tolerance and insulin sensitivity in skeletal muscle.


2018 ◽  
Vol 314 (3) ◽  
pp. R468-R477 ◽  
Author(s):  
Bailey Peck ◽  
Josh Huot ◽  
Tim Renzi ◽  
Susan Arthur ◽  
Michael J. Turner ◽  
...  

Protein kinase C-θ (PKC-θ) is a lipid-sensitive molecule associated with lipid-induced insulin resistance in skeletal muscle. Rodent models have not cohesively supported that PKC-θ impairs insulin responsiveness in skeletal muscle. The purpose of this study was to generate mice that lack PKC-θ in skeletal muscle and determine how lipid accumulation and insulin responsiveness are affected in that tissue. Mice lacking PKC-θ in skeletal muscle (SkMPKCθKO) and controls (SkMPKCθWT) were placed on a regular diet (RD) or high-fat diet (HFD) for 15 wk, followed by determination of food intake, fasting glucose levels, lipid accumulation, and insulin responsiveness. There were no differences between SkMPKCθWTand SkMPKCθKOmice on a RD. SkMPKCθKOmice on a HFD gained less weight from 10 through 15 wk of dietary intervention ( P < 0.05). This was likely due to less caloric consumption ( P = 0.0183) and fewer calories from fat ( P < 0.001) compared with SkMPKCθWTmice on a HFD. Intramyocellular lipid accumulation ( P < 0.0001), fatty acid binding protein 4, and TNF-α mRNA levels ( P < 0.05) were markedly reduced in SkMPKCθKOcompared with SkMPKCθWTmice on a HFD. As a result, fasting hyperglycemia was mitigated and insulin responsiveness, as indicated by Akt phosphorylation, was maintained in SkMPKCθKOon a HFD. Liver lipid accumulation was not affected by genotype, suggesting the deletion of PKC-θ from skeletal muscle has a tissue-specific effect. PKC-θ is a regulator of lipid-induced insulin resistance in skeletal muscle. However, the effects of this mutation may be tissue specific. Further work is warranted to comprehensively evaluated whole body metabolic responses in this model.


Author(s):  
Song Jae Lee ◽  
Sang Won Shin

Even though it has long been known that diabetes develops in distinctive stages over a long span of time, no comprehensive diabetes development model has been developed yet. Insulin resistance (IR) plays a major role in development of diabetes. A widespread belief regarding IR is that it is a global parameter affecting the whole body simultaneously by merely impairing glucose uptake in tissues. However, investigation by a new methodology that we have named integrated approach suggests that IR not merely impairs glucose uptake in tissues but also produces tissue‑specific metabolic disruptions varying widely from tissue to tissue, and that IR would not necessarily develop simultaneously over the whole body but instead develop first preferentially in the muscle tissue with a relatively low cell turnover and then progresses in sequence to the subcutaneous adipose tissue to the visceral adipose tissue to the liver with higher cell turnovers. This is the most important rationale for subdividing IR into the four distinct tissue‑specific IRs: muscle insulin resistance (MIR), subcutaneous adipose insulin resistance (s‑AIR), visceral adipose insulin resistance (v‑AIR), and hepatic insulin resistance (HIR). Sequential development of tissue‑specific IRs, in the order of MIR, s‑AIR, v‑AIR, and HIR, producing tissue‑specific metabolic disruptions is nothing but the whole body insulin resistance (WBIR) evolving in four distinctively insulin‑resistant stages. Four‑stage evolution from rapid weight gain to visceral obesity to rapid weight loss to full‑blown diabetic state not only complies well with the natural development history of diabetes, but also resolves most of controversies on diabetes or obesity. Development of the four‑stage WBIR evolution model, which also refutes the entrenched notion of the lipid‑induced insulin resistance (LIIR) but instead supports the glycation‑induced insulin resistance (GIIR) proposed in this study, may possibly be considered a breakthrough in study of diabetes or obesity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Anouk Gijbels ◽  
Inez Trouwborst ◽  
Kelly M. Jardon ◽  
Gabby B. Hul ◽  
Els Siebelink ◽  
...  

Background: It is well-established that the etiology of type 2 diabetes differs between individuals. Insulin resistance (IR) may develop in different tissues, but the severity of IR may differ in key metabolic organs such as the liver and skeletal muscle. Recent evidence suggests that these distinct tissue-specific IR phenotypes may also respond differentially to dietary macronutrient composition with respect to improvements in glucose metabolism.Objective: The main objective of the PERSON study is to investigate the effects of an optimal vs. suboptimal dietary macronutrient intervention according to tissue-specific IR phenotype on glucose metabolism and other health outcomes.Methods: In total, 240 overweight/obese (BMI 25 – 40 kg/m2) men and women (age 40 – 75 years) with either skeletal muscle insulin resistance (MIR) or liver insulin resistance (LIR) will participate in a two-center, randomized, double-blind, parallel, 12-week dietary intervention study. At screening, participants undergo a 7-point oral glucose tolerance test (OGTT) to determine the hepatic insulin resistance index (HIRI) and muscle insulin sensitivity index (MISI), classifying each participant as either “No MIR/LIR,” “MIR,” “LIR,” or “combined MIR/LIR.” Individuals with MIR or LIR are randomized to follow one of two isocaloric diets varying in macronutrient content and quality, that is hypothesized to be either an optimal or suboptimal diet, depending on their tissue-specific IR phenotype (MIR/LIR). Extensive measurements in a controlled laboratory setting as well as phenotyping in daily life are performed before and after the intervention. The primary study outcome is the difference in change in disposition index, which is the product of insulin sensitivity and first-phase insulin secretion, between participants who received their hypothesized optimal or suboptimal diet.Discussion: The PERSON study is one of the first randomized clinical trials in the field of precision nutrition to test effects of a more personalized dietary intervention based on IR phenotype. The results of the PERSON study will contribute knowledge on the effectiveness of targeted nutritional strategies to the emerging field of precision nutrition, and improve our understanding of the complex pathophysiology of whole body and tissue-specific IR.Clinical Trial Registration:https://clinicaltrials.gov/ct2/show/NCT03708419, clinicaltrials.gov as NCT03708419.


2018 ◽  
Vol 178 (5) ◽  
pp. 523-531 ◽  
Author(s):  
Miikka-Juhani Honka ◽  
Aino Latva-Rasku ◽  
Marco Bucci ◽  
Kirsi A Virtanen ◽  
Jarna C Hannukainen ◽  
...  

Objective Insulin resistance is reflected by the rates of reduced glucose uptake (GU) into the key insulin-sensitive tissues, skeletal muscle, liver and adipose tissue. It is unclear whether insulin resistance occurs simultaneously in all these tissues or whether insulin resistance is tissue specific. Design and methods We measured GU in skeletal muscle, adipose tissue and liver and endogenous glucose production (EGP), in a single session using 18F-fluorodeoxyglucose with positron emission tomography (PET) and euglycemic–hyperinsulinemic clamp. The study population consisted of 326 subjects without diabetes from the CMgene study cohort. Results Skeletal muscle GU less than 33 µmol/kg tissue/min and subcutaneous adipose tissue GU less than 11.5 µmol/kg tissue/min characterized insulin-resistant individuals. Men had considerably worse insulin suppression of EGP compared to women. By using principal component analysis (PCA), BMI inversely and skeletal muscle, adipose tissue and liver GU positively loaded on same principal component explaining one-third of the variation in these measures. The results were largely similar when liver GU was replaced by EGP in PCA. Liver GU and EGP were positively associated with aging. Conclusions We have provided threshold values, which can be used to identify tissue-specific insulin resistance. In addition, we found that insulin resistance measured by GU was only partially similar across all insulin-sensitive tissues studied, skeletal muscle, adipose tissue and liver and was affected by obesity, aging and gender.


Sign in / Sign up

Export Citation Format

Share Document