scholarly journals Characterisation of Hydrological Response to Rainfall at Multi Spatio-Temporal Scales in Savannas of Semi-Arid Australia

Author(s):  
Ben Jarihani ◽  
Roy C. Sidle ◽  
Rebecca Bartley ◽  
Christian H. Roth ◽  
Scott Wilkinson

Rainfall is the main driver of hydrological processes in dryland environments and characterising the rainfall variability and processes of runoff generation are critical for understanding ecosystem function of catchments. Using remote sensing and in situ data sets, we assess the spatial and temporal variability of the rainfall, rainfall-runoff response, and effects of antecedent soil moisture and ground cover at different spatial scales on runoff coefficients in the Upper Burdekin catchment, northeast Australia, which is a major contributor of sediment and nutrients to the Great Barrier Reef. The high temporal and spatial variability of rainfall exerts significant controls on runoff generation processes. Rainfall amount and intensity are the primary runoff controls, and runoff coefficients for wet antecedent conditions were higher than for dry conditions. The majority of runoff occurred via surface runoff generation mechanisms, with subsurface runoff likely contributing little runoff due to the intense nature of rainfall events. At annual to seasonal temporal scales and for relatively large catchments, we could not detect a significant effect of ground cover on runoff. We conclude that in the range of moderate to large catchments (193 – 36,260 km2) runoff generation processes are sensitive to both antecedent soil moisture and ground cover. A higher runoff-ground cover correlation in drier months with sparse ground cover highlighted the critical role of cover at the onset of the wet season and how runoff generation is more sensitive to cover in drier months than in wetter months. The monthly water balance analysis indicates that runoff generation in wetter months (January and February) is partially influenced by saturation overland flow, most likely confined to saturated soils in riparian corridors, swales, and areas of shallow soil. By March and continuing through October, the soil ‘bucket’ progressively empties by evapotranspiration, and Hortonian overland flow becomes the dominant, if not exclusive, flow generation process. The results of this study can be used to better understand the rainfall-runoff relationships in dryland environments and subsequent exposure of coral reef ecosystems in Australia and elsewhere to terrestrial runoff.

2016 ◽  
Vol 20 (11) ◽  
pp. 4525-4545 ◽  
Author(s):  
Shabnam Saffarpour ◽  
Andrew W. Western ◽  
Russell Adams ◽  
Jeffrey J. McDonnell

Abstract. Thresholds and hydrologic connectivity associated with runoff processes are a critical concept for understanding catchment hydrologic response at the event timescale. To date, most attention has focused on single runoff response types, and the role of multiple thresholds and flow path connectivities has not been made explicit. Here we first summarise existing knowledge on the interplay between thresholds, connectivity and runoff processes at the hillslope–small catchment scale into a single figure and use it in examining how runoff response and the catchment threshold response to rainfall affect a suite of runoff generation mechanisms in a small agricultural catchment. A 1.37 ha catchment in the Lang Lang River catchment, Victoria, Australia, was instrumented and hourly data of rainfall, runoff, shallow groundwater level and isotope water samples were collected. The rainfall, runoff and antecedent soil moisture data together with water levels at several shallow piezometers are used to identify runoff processes in the study site. We use isotope and major ion results to further support the findings of the hydrometric data. We analyse 60 rainfall events that produced 38 runoff events over two runoff seasons. Our results show that the catchment hydrologic response was typically controlled by the Antecedent Soil Moisture Index and rainfall characteristics. There was a strong seasonal effect in the antecedent moisture conditions that led to marked seasonal-scale changes in runoff response. Analysis of shallow well data revealed that streamflows early in the runoff season were dominated primarily by saturation excess overland flow from the riparian area. As the runoff season progressed, the catchment soil water storage increased and the hillslopes connected to the riparian area. The hillslopes transferred a significant amount of water to the riparian zone during and following events. Then, during a particularly wet period, this connectivity to the riparian zone, and ultimately to the stream, persisted between events for a period of 1 month. These findings are supported by isotope results which showed the dominance of pre-event water, together with significant contributions of event water early (rising limb and peak) in the event hydrograph. Based on a combination of various hydrometric analyses and some isotope and major ion data, we conclude that event runoff at this site is typically a combination of subsurface event flow and saturation excess overland flow. However, during high intensity rainfall events, flashy catchment flow was observed even though the soil moisture threshold for activation of subsurface flow was not exceeded. We hypothesise that this was due to the activation of infiltration excess overland flow and/or fast lateral flow through preferential pathways on the hillslope and saturation overland flow from the riparian zone.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1216 ◽  
Author(s):  
Yue Zhai ◽  
Chuanhai Wang ◽  
Gang Chen ◽  
Chun Wang ◽  
Xiaoning Li ◽  
...  

In the flat lowland agricultural areas of subtropical climate zones, the runoff process has a great influence on the regional water quantity and quality. In this study, field data about rainfall, evapotranspiration, soil moisture, groundwater table, and surface water dynamics were collected in two different experimental sites in the Taihu Basin, China. Results showed that densely distributed ditches contributed to shallow groundwater depths and persistent near-saturation soil. A correlation analysis was conducted to improve the understandings of runoff generation in humid lowland areas of the Taihu Basin. It was found that a Dunne overland flow was the dominant mechanism responsible for the rapid runoff generation. The total rainfall and runoff expressed a good linear relationship with an R2 of 0.95 in the Hongqiwei test site. The initial groundwater depth was considered as the indicator of the antecedent soil moisture estimation for the close relationship. The depression storage was suggested in a range from 4.72 to 8.03 mm for an estimation based on the water balance analysis for each rainfall event, which proves that the depression storage should not be neglected when calculating the runoff generation process in humid lowlands.


2021 ◽  
Author(s):  
Bob W. Zwartendijk ◽  
H.J. (Ilja) van Meerveld ◽  
Ryan J. Teuling ◽  
Chandra P. Ghimire ◽  
L. Adrian Bruijnzeel

<p>In many tropical areas slash-and-burn agriculture is an important driver of forest loss. In areas where slash-and-burn agriculture has been practiced for decades, land cover is typically a mosaic of patches of remnant forest, fields under active cultivation, fallows in various stages of regrowth (ranging from young shrub to semi-mature), and degraded fire-climax grasslands. Although runoff generation mechanisms are expected to be different for these different patches, little quantitative information is available in this regard, particularly at the catchment scale and over longer time-scales (i.e., multiple slash-and-burn cycles).</p><p>We re-instrumented a 31 ha catchment in upland Eastern Madagascar, where slash-and-burn agriculture has been practiced for more than 70 years in 2015; it had been monitored between 1963 and 1972 as well<sup>1</sup>. We measured streamflow at two locations and overland flow and soil moisture for four hillside plots (0.05 – 1.93 ha): one plot under repeatedly coppiced and burned <em>Eucalyptus</em> and three plots under young shrub and tree fallows. One of the plots underwent rudimentary terracing in the past. We analysed the rainfall-runoff dynamics for 50 rainfall events (median 12 mm, maximum 71 mm).</p><p>For 60% of the events, the stormflow coefficient (minimum contributing area) was <3%, which is the proportion of valley-bottom wetlands and rice paddies in the catchment. Stable isotope sampling for five storm runoff events indicate a maximum total event-water contribution of 16%. However, instantaneous event-water contributions were as high as 66%. The hillside plot runoff response was dominated by saturation-excess overland flow and showed strong threshold behaviour in terms of the antecedent soil moisture storage in the upper 30 cm of the soil plus the event total rainfall amount (ASI + P). Average threshold values for overland flow occurrence ranged from 87 mm for the coppiced <em>Eucalyptus</em> to 137 mm for the young fallow plots (regardless of terrace presence). Stormflow also increased after an ASI+P-threshold was exceeded (100 mm based on the soil moisture sensors for the <em>Eucalyptus</em> plot and 150 mm for the sensors at the tree fallow plots).</p><p>These results indicate an increased hydrological connectivity between hillslopes and valley bottom under wetter conditions and that stormflow in the study catchment is strongly affected by variations in seasonal rainfall. The results will be used to validate a hydrological model to determine the net effect of concurrent changes in soil infiltrability and vegetation water use associated with forest loss and recovery on stormflow totals and the seasonal flow regime.</p><p><strong><sup>1</sup></strong>Bailly, C., de Coignac, G.B., Malvos, C., Ningre, J.M., and Sarrailh, J.M. (1974). Étude de l'influence du couvert naturel et de ses modifications á Madagascar. Expérimentations en bassins versants élémentaires. Cahiers Scientifiques, 4. Centre Scientifique Forestier Tropical, Nogent-sur-Marne, France, 114 pp.</p>


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 296 ◽  
Author(s):  
Shuang Song ◽  
Wen Wang

An experimental soil tank (12 m long × 1.5 m wide × 1.5m deep) equipped with a spatially distributed instrument network was designed to conduct the artificial rainfall–runoff experiments. Soil moisture (SM), precipitation, surface runoff (SR) and subsurface runoff (SSR) were continuously monitored. A total of 32 rainfall–runoff events were analyzed to investigate the non-linear patterns of rainfall–runoff response and estimate the impact of antecedent soil moisture (ASM) on runoff formation. Results suggested that ASM had a significant impact on runoff at this plot scale, and a moisture threshold-like value which was close to field capacity existed in the relationship between soil water content and event-based runoff coefficient (φe), SSR and SSR/SR. A non-linear relationship between antecedent soil moisture index (ASI) that represented the initial storage capacity of the soil tank and total runoff was also observed. Response times of SR and SM to rainfall showed a marked variability under different conditions. Under wet conditions, SM at 10 cm started to increase prior to SR on average, whereas it responds slower than SR under dry conditions due to the effect of water repellency. The predominant contributor to SR generation for all events is the Hortonian overland flow (HOF). There is a hysteretic behavior between subsurface runoff flow and soil moisture with a switch in the hysteretic loop direction based on the wetness conditions prior to the event.


2020 ◽  
Author(s):  
Konstantina Risva ◽  
Dionysios Nikolopoulos ◽  
Andreas Efstratiadis

<p>We present a distributed hydrological model with minimal calibration requirements, which represents the rainfall-runoff transformation and the flow routing processes. The generation of surface runoff is based on a modified NRCS-CN scheme. Key novelty is the use of representative CN values, which are initially assigned to model cells on the basis of slope, land cover and permeability maps, and adjusted to antecedent soil moisture conditions. For the propagation of runoff to the basin outlet two flow types are considered, i.e. overland flow across the terrain and channel flow along the river network. These are synthesized by employing a novel velocity-based approach, where the assignment of velocities along the river network is based on macroscopic hydraulic information. It also uses the concept of varying time of concentration, which is considered function of the average runoff intensity across the catchment. This configuration is suitable for event-based flood simulation and requires the specification of only two lumped inputs, which are either manually estimated or inferred through calibration. The model can also run in continuous mode, by employing a soil moisture accounting scheme that produces both the surface (overland) runoff and the interflow through the unsaturated zone. The two model configurations are demonstrated in the representation of observed flows across Nedontas river basin at South Peloponnese, Greece.</p>


2006 ◽  
Vol 10 (6) ◽  
pp. 829-847 ◽  
Author(s):  
S. Giertz ◽  
B. Diekkrüger ◽  
G. Steup

Abstract. The aim of the study was to test the applicability of a physically-based model to simulate the hydrological processes in a headwater catchment in Benin. Field investigations in the catchment have shown that lateral processes such as surface runoff and interflow are most important. Therefore, the 1-D SVAT-model SIMULAT was modified to a semi-distributed hillslope version (SIMULAT-H). Based on a good database, the model was evaluated in a multi-criteria validation using discharge, discharge components and soil moisture data. For the validation of discharge, good results were achieved for dry and wet years. The main differences were observable in the beginning of the rainy season. A comparison of the discharge components determined by hydro-chemical measurements with the simulation revealed that the model simulated the ratio of groundwater fluxes and fast runoff components correctly. For the validation of the discharge components of single events, larger differences were observable, which was partly caused by uncertainties in the precipitation data. The representation of the soil moisture dynamics by the model was good for the top soil layer. For deeper soil horizons, which are characterized by higher gravel content, the differences between simulated and measured soil moisture were larger. A good agreement of simulation results and field investigations was achieved for the runoff generation processes. Interflow is the predominant process on the upper and the middle slopes, while at the bottom of the hillslope groundwater recharge and – during the rainy season – saturated overland flow are important processes.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2324
Author(s):  
Peng Lin ◽  
Pengfei Shi ◽  
Tao Yang ◽  
Chong-Yu Xu ◽  
Zhenya Li ◽  
...  

Hydrological models for regions characterized by complex runoff generation process been suffer from a great weakness. A delicate hydrological balance triggered by prolonged wet or dry underlying condition and variable extreme rainfall makes the rainfall-runoff process difficult to simulate with traditional models. To this end, this study develops a novel vertically mixed model for complex runoff estimation that considers both the runoff generation in excess of infiltration at soil surface and that on excess of storage capacity at subsurface. Different from traditional models, the model is first coupled through a statistical approach proposed in this study, which considers the spatial heterogeneity of water transport and runoff generation. The model has the advantage of distributed model to describe spatial heterogeneity and the merits of lumped conceptual model to conveniently and accurately forecast flood. The model is tested through comparison with other four models in three catchments in China. The Nash–Sutcliffe efficiency coefficient and the ratio of qualified results increase obviously. Results show that the model performs well in simulating various floods, providing a beneficial means to simulate floods in regions with complex runoff generation process.


2010 ◽  
Vol 7 (5) ◽  
pp. 8091-8124 ◽  
Author(s):  
D. Penna ◽  
H. J. Tromp-van Meerveld ◽  
A. Gobbi ◽  
M. Borga ◽  
G. Dalla Fontana

Abstract. This study investigates the role of soil moisture on the threshold runoff response in a small headwater catchment in the Italian Alps that is characterised by steep hillslopes and a distinct riparian zone. This study focuses on: (i) the threshold soil moisture-runoff relationship and the influence of catchment topography on this relation; (ii) the temporal dynamics of soil moisture, streamflow and groundwater that characterize the catchment's response to rainfall during dry and wet periods; and (iii) the combined effect of antecedent wetness conditions and rainfall amount on hillslope and riparian runoff. Our results highlight the strong control exerted by soil moisture on runoff in this catchment: a sharp threshold exists in the relationship between soil water content and runoff coefficient, streamflow, and hillslope-averaged depth to water table. Low runoff ratios were related to the response of the riparian zone, which was always close to saturation. High runoff ratios occurred during wet antecedent conditions, when the soil moisture threshold was exceeded. In these cases, subsurface flow was activated on hillslopes, which became major contributors to runoff. Antecedent wetness conditions also controlled the catchment's response time: during dry periods, streamflow reacted and peaked prior to hillslope soil moisture whereas during wet conditions the opposite occurred. This difference resulted in a hysteretic behaviour in the soil moisture-streamflow relationship. Finally, the influence of antecedent moisture conditions on runoff was also evident in the relation between cumulative rainfall and total stormflow. Small storms during dry conditions produced low runoff amounts, mainly from overland flow from the near saturated riparian zone. Conversely, for rainfall events during wet conditions, hillslopes contributed to streamflow and higher runoff values were observed.


2020 ◽  
Author(s):  
Ralf Merz ◽  
Larisa Tarasova ◽  
Stefano Basso

<p>Floods can be caused by a large variety of different processes, such as short, but intense rainfall bursts, long rainfall events, which are wetting up substantial parts of the catchment, or rain on snow cover or frozen soils. Although there is a plethora on studies analysing or modelling rainfall-runoff processes, it is still not well understood, what rainfall and runoff generation conditions are needed to generate flood runoff and how these characteristics vary between catchments. In this databased approach we decipher the ingredients of flood events occurred in 161 catchments across Germany. For each catchment rainfall-runoff events are separated from observed time series for the period 1950-2013, resulting in about 170,000 single events. A peak-over-threshold approach is used to select flood events out of these runoff events. For each event, spatially and temporally distributed rainfall and runoff generation characteristics, such as snow cover and soil moisture, as well as their interaction are derived. Then we decipher those event characteristics controlling flood event occurrence by using machine learning techniques.</p><p>On average, the most important event characteristic controlling flood occurrence in Germany is, as expected, event rainfall volume, followed by the overlap of rainfall and soil moisture and the extent of wet areas in the catchment (area with high soil moisture content). Rainfall intensity is another important characteristic. However, a large variability in its importance is noticeable between dryer catchments where short rainfall floods occur regularly and wetter catchments, where rainfall intensity might be less important for flood generation. To analyse the regional variability of flood ingredients, we cluster the catchments according to similarity in their flood controlling event characteristics and test how good the flood occurrence can be predicted from regionalised event characteristics. Finally, we analyse the regional variability of the flood ingredients in the light of climate and landscape catchment characteristics.</p>


2011 ◽  
Vol 15 (10) ◽  
pp. 3171-3179 ◽  
Author(s):  
Y. Zhang ◽  
H. Wei ◽  
M. A. Nearing

Abstract. This study presents unique data on the effects of antecedent soil moisture on runoff generation in a semi-arid environment, with implications for process-based modeling of runoff. The data were collected from four small watersheds measured continuously from 2002 through 2010 in an environment where evapo-transpiration approaches 100% of the infiltrated water on the hillslopes. Storm events were generally intense and of short duration, and antecedent volumetric moisture conditions were dry, with an average in the upper 5 cm soil layer over the nine year period of 8% and a standard deviation of 3%. Sensitivity analysis of the model showed an average of 0.05 mm change in runoff for each 1% change in soil moisture, indicating an approximate 0.15 mm average variation in runoff accounted for by the 3% standard deviation of measured antecedent soil moisture. This compared to a standard deviation of 4.7 mm in the runoff depths for the measured events. Thus the low variability of soil moisture in this environment accounts for a relative lack of importance of storm antecedent soil moisture for modeling the runoff. Runoff characteristics simulated with a nine year average of antecedent soil moisture were statistically identical to those simulated with measured antecedent soil moisture, indicating that long term average antecedent soil moisture could be used as a substitute for measured antecedent soil moisture for runoff modeling of these watersheds. We also found no significant correlations between measured runoff ratio and antecedent soil moisture in any of the four watersheds.


Sign in / Sign up

Export Citation Format

Share Document