scholarly journals The Impact of Antenna Height on 3D-MIMO Channel: a Ray Launching Based Analysis

Author(s):  
Qi Hong ◽  
Jiliang Zhang ◽  
Hui Zheng ◽  
Hao Li ◽  
Haonan Hu ◽  
...  

Three dimension (3D) Multi-input-multi-output (MIMO) scheme, which exploits another dimension of the spatial resource, is one of the enabling technologies for the next generation mobile communication. As the elevation angle in 3D-MIMO channel model might varies against the height of the base station transmit antenna, it has to be taken into account carefully. In this paper, the impact of antenna height on the channel characteristics of 3D MIMO channel is investigated by using the intelligent ray launching algorithm (IRLA). Three typical street scenarios, i.e., the straight street, the fork road and the cross road, are selected as benchmarks. On the basis of simulations, joint and marginal probability density functions (PDFs) of both the elevation angle of departure (EAoD) and the elevation angle of arrival (EAoA) are obtained. The elevation angle spread (AS) and the delay spread (DS) under various antenna heights are also discussed. Simulation results indicate that the PDFs of EAoD and EAoA vary characteristics under different street scenarios. Moreover, the minimum value of the DS can be achieved when the antenna height is half of the building height.

Author(s):  
Jianzheng Li ◽  
Fei Li ◽  
Wei Ji ◽  
Yulong Zou ◽  
Chunguo Li

In this paper a three-dimension (3D) multiple-input multiple-output (MIMO) channel model is derived by considering the elevation dimension and the azimuth dimension together. To get a more accurate performance analysis for 3D MIMO channel, both Tx and Rx correlation matrices are derived, respectively, in closed form, which consist of 3D Kronecker channel model. This novel 3D Kronecker channel model is developed for arbitrary antenna arrays with non-isotropic antenna patterns and also for any propagation environment of 3D MIMO systems. In order to quantify the performance of 3D MIMO systems, the capacity in multi-user cases is analyzed. Simulation results validate the proposed 3D Kronecker channel model and study the impact of elevation and azimuth angular spread and that of Rx antenna element spacing on the correlation. The proposed capacity analysis in multi-user cases for 3D MIMO systems is also verified by simulation.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yawei Yu ◽  
Jianhua Zhang ◽  
Mansoor Shafi ◽  
Min Zhang ◽  
Jawad Mirza

The 3-dimensional (3D) channel model gives a better understanding of statistical characteristics for practical channels than the 2-dimensional (2D) channel model, by taking the elevation domain into consideration. As different organizations and researchers have agreed to a standard 3D channel model, we attempt to measure the 3D channel and determine the parameters of the standard model. In this paper, we present the statistical propagation results of the 3D multiple-input and multiple-output (MIMO) channel measurement campaign performed in China and New Zealand (NZ). The measurements are done for an outdoor-to-indoor (O2I) urban scenario. The dense indoor terminals at different floors in a building form a typical 3D propagation environment. The key parameters of the channel are estimated from the measured channel impulse response (CIR) using the spatial-alternating generalized expectation-maximization (SAGE) algorithm. Till now there is abundant research performed on the azimuth domain; this paper mainly considers the statistical characteristics of the elevation domain. A statistical analysis of 3D MIMO channel results for both China and NZ measurements is presented for the following parameters: power delay profile (PDP), root mean square (rms), delay spread (DS), elevation angle-of-arrival (EAoA) distribution, elevation angle-of-departure (EAoD) distribution, elevation angular spread (AS), and cross-polarization discrimination (XPD).


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xin Chen ◽  
Yong Fang ◽  
Weidong Xiang ◽  
Liang Zhou

In this paper, an extension of spatial channel model (SCM) for vehicle-to-vehicle (V2V) communication channel in roadside scattering environment is investigated for the first time theoretically and by simulations. Subsequently, to efficiently describe the roadside scattering environment and reflect the nonstationary properties of V2V channels, the proposed SCM V2V model divides the scattering objects into three categories of clusters according to the location of effective scatterers by introducing critical distance. We derive general expressions for the most important statistical properties of V2V channels, such as channel impulse response, power spectral density, angular power density, autocorrelation function, and Doppler spread of the proposed model. The impact of vehicle speed, traffic density, and angle of departure, angle of arrival, and other statistical performances on the V2V channel model is thoroughly discussed. Numerical simulation results are presented to validate the accuracy and effectiveness of the proposed model.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Qi Wang ◽  
Bo Ai ◽  
Ke Guan ◽  
David W. Matolak ◽  
Ruisi He ◽  
...  

According to the demands for fifth-generation (5G) communication systems, high frequency bands (above 6 GHz) need to be adopted to provide additional spectrum. This paper investigates the characteristics of indoor corridor channels at 15 GHz. Channel measurements with a vector network analyzer in two corridors were conducted. Based on a ray-optical approach, a deterministic channel model covering both antenna and propagation characteristic is presented. The channel model is evaluated by comparing simulated results of received power and root mean square delay spread with the corresponding measurements. By removing the impact of directional antennas from the transmitter and receiver, a path loss model as well as small-scale fading properties for typical corridors is presented based on the generated samples from the deterministic model. Results show that the standard deviation of path loss variation is related to the Tx height, and placing the Tx closer to the ceiling leads to a smaller fluctuation of path loss.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Weimin Wang ◽  
Huaqiang Gao ◽  
Yongle Wu ◽  
Yuanan Liu

With the development of multiple-input-multiple-output (MIMO) technology, the over-the-air (OTA) testing of MIMO capable devices with different sizes needs to be conducted for performance evaluation. The device under test (DUT) should be within a tridimensional test volume created by multiprobe configurations. Thus, determining the maximum size of test volume could be vital to test the DUT of different size and larger test volumes should be adopted to evaluate larger DUTs. All types of probe configurations including the fixed and the flexible probe configurations are investigated in this paper to address this issue. The maximum of test volume size (MTVS) is determined within the given error threshold of spatial correlation for a given probe configuration. Simultaneously, the impact of different probe configurations on MTVS is studied in order to obtain larger MTVSs. Simulation results show that larger MTVSs can be obtained by utilizing the optimal probe configuration with any given 3D channel model for 3D MIMO OTA testing.


Author(s):  
Kabiru Yusuf ◽  
Dahiru Sani Shuaibu ◽  
Suleiman Aliyu Babale

In this paper, we investigated the effect of different channel propagation characteristics on the performance of 4G systems from high altitude platforms (HAPs). The use of High-Altitude Platforms for communication purpose in the past focused mostly on the assumption that the platform is quasi stationary. The technical limitation of the assumption was that of ensuring stability in the positioning of the platform in space. The use of antenna steering and other approaches were proposed as a solution to the said problem. In this paper, we proposed a channel model which account for the motion of the platform. This was done by investigating the effect of Doppler shift on the carrier frequency as the signals propagate between the transmitter and receiver while the High-Altitude Platform is in motion. The basic free space model was used and subjected to the frequency variation caused by the continuous random shift due to the motion of the HAPs. The trajectory path greatly affects the system performance. A trajectory of 30km, 100km and 500km radii were simulated. An acute elevation angle was used in the simulation. The proposed model was also compared to two other channel models to illustrate its performance. The results show that the proposed model behave similar to the existing models except at base station ID 35 and 45 where the highest deviation of 20dBm was observed. Other stations that deviated were less than 2dBm.


Sign in / Sign up

Export Citation Format

Share Document