scholarly journals A Cosmological View on Milgrom’s Acceleration Constant

Author(s):  
Engel Roza

In this article it is shown how Milgrom’s acceleration constant is related with the ΩΛ, Ωm and ΩB values of the matter distribution within observable universe as defined in the Standard Model of Cosmology, established by the Planck Collaboration Group. The result is a two-parameter model for the observable universe. The two parameters are the age of the universe and Milgrom’s acceleration constant. It is shown that these are sufficient to calculate the amounts of matter and dark energy in the universe, as well as the contributions of dark matter and baryonic matter in the matter part. The numerical results are in agreement with those of the Lamda-CDM model. 

Author(s):  
Engel Roza

In this article it is shown how Milgrom’s acceleration constant is related with the ΩΛ, Ωm and ΩB values of the matter distribution within observable universe as defined in the Standard Model of Cosmology, established by the Planck Collaboration Group. The result is a two-parameter model for the observable universe. The two parameters are the age of the universe and Milgrom’s acceleration constant. It is shown that these are sufficient to calculate the amounts of matter and dark energy in the universe, as well as the contributions of dark matter and baryonic matter in the matter part. The numerical results are in agreement with those of the Lamda-CDM model.


Author(s):  
Engel Roza

In this article a two-parameter model is developed for the universe. The two parameters are the age of the universe and the value of Einstein’s Cosmological Constant. It is shown that these are sufficient to calculate the amounts of matter and dark energy in the universe, as well as the contributions of dark matter and baryonic matter in the matter part. All this, not only for present time, but also as a function of cosmological time. Moreover, the model allows establishing the numerical value for Milgrom’s acceleration parameter for present time. The developed theory gives an adequate explanation for the phenomena of the accelerated scaling of the universe and the anomaly of the stellar rotation curves in galaxies. The numerical results are in agreement with those of the Lamda-CDM model.


Author(s):  
Engel Roza

In this article a two-parameter model is developed for the universe. The two parameters are the age of the universe and Milgrom’s acceleration constant. It is shown that these are sufficient to calculate the amounts of matter and dark energy in the universe, as well as the contributions of dark matter and baryonic matter in the matter part. All this, not only for present time, but also as a function of cosmological time. The developed theory gives an adequate explanation for the phenomena of the accelerated scaling of the universe and the anomaly of the stellar rotation curves in galaxies. The numerical results are in agreement with those of the Lamda-CDM model.


2000 ◽  
Vol 09 (05) ◽  
pp. 575-579
Author(s):  
TONG-JIE ZHANG

While the pressureless dust assumption has been widely adopted in the standard model of cosmology, a quantitative estimate of the actual contribution of thermal pressure of the baryonic matter and the hot/cold dark matter to the dynamical evolution of the Universe has not yet been made in literature. In this paper we provide a simple scenario of how the solution, e.g. the age of the Universe, is affected by the inclusion of the thermal pressure of the baryon and dark matter particles.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter provides a few examples of representations of the universe on a large scale—a first step in constructing a cosmological model. It first discusses the Copernican principle, which is an approximation/hypothesis about the matter distribution in the observable universe. The chapter then turns to the cosmological principle—a hypothesis about the geometry of the Riemannian spacetime representing the universe, which is assumed to be foliated by 3-spaces labeled by a cosmic time t which are homogeneous and isotropic, that is, ‘maximally symmetric’. After a discussion on maximally symmetric space, this chapter considers spacetimes with homogenous and isotropic sections. Finally, this chapter discusses Milne and de Sitter spacetimes.


2005 ◽  
Vol 20 (14) ◽  
pp. 1021-1036 ◽  
Author(s):  
GIANFRANCO BERTONE ◽  
DAVID MERRITT

Non-baryonic, or "dark", matter is believed to be a major component of the total mass budget of the Universe. We review the candidates for particle dark matter and discuss the prospects for direct detection (via interaction of dark matter particles with laboratory detectors) and indirect detection (via observations of the products of dark matter self-annihilations), focusing in particular on the Galactic center, which is among the most promising targets for indirect detection studies. The gravitational potential at the Galactic center is dominated by stars and by the supermassive black hole, and the dark matter distribution is expected to evolve on sub-parsec scales due to interaction with these components. We discuss the dominant interaction mechanisms and show how they can be used to rule out certain extreme models for the dark matter distribution, thus increasing the information that can be gleaned from indirect detection searches.


BIBECHANA ◽  
1970 ◽  
Vol 6 ◽  
pp. 27-30
Author(s):  
Devendra Adhikari ◽  
Krishna Raj Adhikari

Different physical phenomena, techniques, and evidences which give the proof for the existence of dark matter have been discussed. Keywords: Baryonic matter; dark matter; Chandra x-ray ObservatoryDOI: 10.3126/bibechana.v6i0.3936BIBECHANA Vol. 6, March 2010 pp.27-30


Author(s):  
Engel Roza

It is shown that the Lambda component in the cosmological Lambda-CDM model can be conceived as vacuum energy, consisting of gravitational particles subject to Heisenberg’s energy-time uncertainty. These particles can be modelled as elementary polarisable Dirac-type dipoles (“darks”) in a fluidal space at thermodynamic equilibrium, with spins that are subject to the Bekenstein-Hawking entropy. Around the baryonic kernels, uniformly distributed in the universe, the spins are polarized, thereby invoking an increase of the effective gravitational strength of the kernels. It explains the dark matter effect to the extent that the numerical value of Milgrom’s acceleration constant can be assessed by theory. Non-polarized vacuum particles beyond the baryonic kernels compose the dark energy. The result is a quantum mechanical interpretation of gravity in terms of quantitatively established shares in baryonic matter, dark matter and dark energy, which correspond with the values of the Lambda-CDM model..


2021 ◽  
Vol 71 (1) ◽  
pp. 279-313
Author(s):  
Gaia Lanfranchi ◽  
Maxim Pospelov ◽  
Philip Schuster

At the dawn of a new decade, particle physics faces the challenge of explaining the mystery of dark matter, the origin of matter over antimatter in the Universe, the apparent fine-tuning of the electroweak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves New Physics at mass scales comparable to that of familiar matter—below the GeV scale but with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and existing data may even provide hints of this possibility. Emboldened by the lessons of the LHC, a vibrant experimental program to discover such physics is underway, guided by a systematic theoretical approach that is firmly grounded in the underlying principles of the Standard Model. We give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs, and we focus in particular on accelerator-based experiments.


2011 ◽  
Vol 20 (2) ◽  
Author(s):  
T. Sepp ◽  
E. Tempel ◽  
M. Gramann ◽  
P. Nurmi ◽  
M. Haupt

AbstractThe SDSS galaxy catalog is one of the best databases for galaxy distribution studies. The SDSS DR8 data is used to construct the galaxy cluster catalog. We construct the clusters from the calculated luminosity density field and identify denser regions. Around these peak regions we construct galaxy clusters. Another interesting question in cosmology is how observable galaxy structures are connected to underlying dark matter distribution. To study this we compare the SDSS DR7 galaxy group catalog with galaxy groups obtained from the semi-analytical Millennium N-Body simulation. Specifically, we compare the group richness, virial radius, maximum separation and velocity dispersion distributions and find a relatively good agreement between the mock catalog and observations. This strongly supports the idea that the dark matter distribution and galaxies in the semi-analytical models and observations are very closely linked.


Sign in / Sign up

Export Citation Format

Share Document