scholarly journals Simulated thermomagnetic properties of DyAl2, HoAl2 and ErAl2 compounds in comparison with the results for TbAl2, GdAl2 and SmAl2 compounds calculated by ATOMIC MATTERS MFA Computation System

Author(s):  
Rafał Michalski ◽  
Jakub Zygadło ◽  
Tomasz Lanczewski

We present the results of calculations of magnetic properties of 3 compounds from Laves phase C15 family: DyAl2, HoAl2 and ErAl2 performed with a new computation system called ATOMIC MATTERS MFA. We compare these findings with the recently published results for TbAl2, GdAl2 and SmAl2. The calculation methodology was based on the localized electron approach applied to describe the thermal evolution electronic structure of rare-earth R3+ ions over a wide temperature range and to compute magnetocaloric effect (MCE). Thermomagnetic properties were calculated based on the fine electronic structure of 4f9, 4f10 and 4f11 configurations of the Dy3+, Ho3+, Er3+ ions, respectively. Our calculations yield the magnetic moment value and direction; single-crystalline magnetization curves in zero field and external magnetic field applied in various directions of m(T, Bext); the 4f-electronic components of specific heat c4f(T, Bext); and temperature dependence of the magnetic entropy and isothermal entropy change with external magnetic field -S(T, Bext). The cubic CEF parameter values used for DyAl2 calculations are taken from earlier research of A.L. Lima, A.O. Tsokol and recalculated for universal cubic parameters (Amn) for the RAl2 series. Our studies reveal the importance of multipolar charge interactions when describing thermomagnetic properties of real 4f electronic systems and the effectiveness of an applied self-consistent molecular field in calculations for magnetic phase transition simulation.

2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Swati Baruah ◽  
U. Sarma ◽  
R. Ganesh

Lane formation dynamics in externally driven pair-ion plasma (PIP) particles is studied in the presence of external magnetic field using Langevin dynamics (LD) simulation. The phase diagram obtained distinguishing the no-lane and lane states is systematically determined from a study of various Coulomb coupling parameter values. A peculiar lane formation-disintegration parameter space is identified; lane formation area extended to a wide range of Coulomb coupling parameter values is observed before disappearing to a mixed phase. The different phases are identified by calculating the order parameter. This and the critical parameters are calculated directly from LD simulation. The critical electric field strength value above which the lanes are formed distinctly is obtained, and it is observed that in the presence of the external magnetic field, the PIP system requires a higher value of the electric field strength to enter into the lane formation state than that in the absence of the magnetic field. We further find out the critical value of electric field frequency beyond which the system exhibits a transition back to the disordered state and this critical frequency is found as an increasing function of the electric field strength in the presence of an external magnetic field. The movement of the lanes is also observed in a direction perpendicular to that of the applied electric and magnetic field directions, which reveals the existence of the electric field drift in the system under study. We also use an oblique force field as the external driving force, both in the presence and absence of the external magnetic field. The application of this oblique force changes the orientation of the lane structures for different applied oblique angle values.


2000 ◽  
Vol 14 (02n03) ◽  
pp. 224-229 ◽  
Author(s):  
V. MEENAKSHI ◽  
S. V. SUBRAMANYAM

In this work, the influence of disorder on the electrical properties (DC conductivity and Magnetoresistance) of amorphous conducting carbon films, prepared by the pyrolysis of Tetra chloro phthalic anhydride, is reported and discussed. The low temperature electrical properties are analyzed in terms of the various models developed for disordered electronic systems. The results indicate the possibility of a metal - insulator (M-I) transition, both as a function of preparation temperature and an external magnetic field.


2021 ◽  
Vol 7 (5) ◽  
pp. 60
Author(s):  
Luis M. Moreno-Ramírez ◽  
Victorino Franco

The applicability of magnetocaloric materials is limited by irreversibility. In this work, we evaluate the reversible magnetocaloric response associated with magnetoelastic transitions in the framework of the Bean-Rodbell model. This model allows the description of both second- and first-order magnetoelastic transitions by the modification of the η parameter (η<1 for second-order and η>1 for first-order ones). The response is quantified via the Temperature-averaged Entropy Change (TEC), which has been shown to be an easy and effective figure of merit for magnetocaloric materials. A strong magnetic field dependence of TEC is found for first-order transitions, having a significant increase when the magnetic field is large enough to overcome the thermal hysteresis of the material observed at zero field. This field value, as well as the magnetic field evolution of the transition temperature, strongly depend on the atomic magnetic moment of the material. For a moderate magnetic field change of 2 T, first-order transitions with η≈1.3−1.8 have better TEC than those corresponding to stronger first-order transitions and even second-order ones.


During last decade, considerable efforts were made to achieve coherent emission from stacks of many Josephson junctions. It is known that strong emission from a junction in the presence of external magnetic field appears at the so-called Fiske steps in the IV-characteristic at voltages which correspond to frequencies of geometrical resonances. However, it is possible to obtain resonant steps in long junctions without external magnetic field. The periodical movement of fluxons is excited due to some disorder in the distribution of critical currents along junctions. The so-called zero-field steps are formed in the IV-curve due to the interaction of fluxons with oscillations of voltage at Josephson frequencies. We investigated numerically IV-characteristics and the dependence of the average square of ac voltage at the end of the stack of two long Josephson junctions on the average voltage. Junctions interacted inductively with each other. We introduced not only the Gaussian distribution of critical currents along junctions but also the Gaussian distribution of coefficients of the interaction between junctions (mutual inductances). Zero-field steps in the IV-characteristic were found at voltages which corresponded to frequencies of in-phase collective modes in the stack as well as to frequencies of uncoupled junctions. Zero-field steps appeared in the hysteretic region of the IV-curve. There appeared also jumps of voltage from the resistive branch to the zero-field step. We showed that there existed distributions of mutual inductances along junctions which provided jumps to voltages at which the average square of ac voltage at the end of the stack (which is proportional to power of emission) was larger than that for the stack with the uniform distribution of mutual inductances.


2015 ◽  
Vol 233-234 ◽  
pp. 741-744
Author(s):  
Sergey Mikhailovich Podgornykh

Effect of the magnetic prehistory on the temperature dependence of the heat capacity of the superconducting Pb, La, Sn. has been studied. As soon as the external magnetic field riches the valueHext=HCthe superconductivity is completely destroyed. The trapped flux was produced in the ring specimen after the magnetic field was turned off atT<TC. We observed a difference of the value of the heat capacity between zero field cooled (ZFC) and field cooled (FC) states in zero magnetic field for the ring specimen. It is found that the FC heat capacity is smaller than the heat capacity both in the normal and in superconducting states.


1977 ◽  
Vol 55 (12) ◽  
pp. 1066-1073 ◽  
Author(s):  
C. di Lauro ◽  
E. Perri

The Zeeman band profiles are calculated for near-case (b) triplet–singlet transitions in asymmetric rotors, making allowance for the intensity perturbations induced by an external magnetic field. It is shown that new bands correlating with zero-field forbidden lines can be observed under the effect of sufficiently high fields. Band profiles and the patterns of the magnetic sublevels of the triplet state split by the external field are discussed in detail for the Paschen–Back limit.


1992 ◽  
Vol 286 ◽  
Author(s):  
R.D. Shull ◽  
R.D. Mcmichael ◽  
J.J. Ritter ◽  
L.H. Bennett

ABSTRACTUpon the application of an external magnetic field, the magnetic spins in a material partially align with the field, thereby reducing the magnetic entropy of the spin system. When performed adiabatically, the specimen's temperature will rise. This temperature rise, δT, related to the entropy change by the heat capacity, is known as the magnetocaloric effect. Upon cycling the magnetic field, this effect can be used for transferring heat from one thermal reservoir to another, forming the basis for a magnetic refrigerator. Recently, NIST scientists predicted composite magnetic materials containing nanometer-size magnetic species could possess enhanced magnetocaloric effects [1-2], especially at high temperatures or low magnetic fields. Magnetic nanocomposites may be prepared in many different ways, and recent magnetocaloric effect data measured on Fe-doped gadolinium gallium garnets are presented to show both the effect of processing and a methodology for optimizing δT.


2021 ◽  
Vol 50 (10) ◽  
pp. 3468-3472
Author(s):  
Roman Boča ◽  
Ján Titiš ◽  
Cyril Rajnák ◽  
J. Krzystek

Magnetochemical standard HgCo(NCS)4 with positive zero-field splitting parameter D displays a slow magnetic relaxation strongly dependent upon the external magnetic field.


Sign in / Sign up

Export Citation Format

Share Document