scholarly journals Assimilation of Sentinel-2 Data into a Snowpack Model in the High Atlas of Morocco

Author(s):  
Mohamed Wassim Baba ◽  
Simon Gascoin ◽  
Lahoucine Hanich

The snow melt from the High Atlas is a critical water resource in Morocco. In spite of its importance, monitoring the spatio-temporal evolution of key snow cover properties like the snow water equivalent remains challenging due to the lack of in situ measurements at high elevation. Since 2015, the Sentinel-2 mission provides high spatial resolution images with a 5 day revisit time, which offers new opportunities to characterize snow cover distribution in mountain regions. Here we present a new data assimilation scheme to estimate the state of the snowpack without in situ data. The model was forced using MERRA-2 data and a particle filter was developed to dynamically reduce the biases in temperature and precipitation using Sentinel-2 observations of the snow cover area. The assimilation scheme was implemented using SnowModel, a distributed energy-balance snowpack model and tested in a pilot catchment in the High Atlas. The study period covers 2015-2016 snow season which corresponds to the first operational year of Sentinel-2A, therefore the full revisit capacity was not yet achieved. Yet, we show that the data assimilation led to a better agreement with independent observations of the snow height at an automatic weather station and the snow cover extent from MODIS. The performance of the data assimilation scheme should benefit from the continuous improvements in MERRA-2 reanalyses and the full revisit capacity of Sentinel-2.

2018 ◽  
Vol 10 (12) ◽  
pp. 1982 ◽  
Author(s):  
Mohamed Baba ◽  
Simon Gascoin ◽  
Lahoucine Hanich

The snow melt from the High Atlas is a critical water resource in Morocco. In spite of its importance, monitoring the spatio-temporal evolution of key snow cover properties like the snow water equivalent remains challenging due to the lack of in situ measurements at high elevation. Since 2015, the Sentinel-2 mission provides high spatial resolution images with a 5 day revisit time, which offers new opportunities to characterize snow cover distribution in mountain regions. Here we present a new data assimilation scheme to estimate the state of the snowpack without in situ data. The model was forced using MERRA-2 data and a particle filter was developed to dynamically reduce the biases in temperature and precipitation using Sentinel-2 observations of the snow cover area. The assimilation scheme was implemented using SnowModel, a distributed energy-balance snowpack model and tested in a pilot catchment in the High Atlas. The study period covers 2015-2016 snow season which corresponds to the first operational year of Sentinel-2A, therefore the full revisit capacity was not yet achieved. Yet, we show that the data assimilation led to a better agreement with independent observations of the snow height at an automatic weather station and the snow cover extent from MODIS. The performance of the data assimilation scheme should benefit from the continuous improvements of MERRA-2 reanalysis and the full revisit capacity of Sentinel-2.


2017 ◽  
Vol 11 (4) ◽  
pp. 1647-1664 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F. P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of) SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF). Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.


2014 ◽  
Vol 15 (2) ◽  
pp. 551-562 ◽  
Author(s):  
Jiarui Dong ◽  
Mike Ek ◽  
Dorothy Hall ◽  
Christa Peters-Lidard ◽  
Brian Cosgrove ◽  
...  

Abstract Understanding and quantifying satellite-based, remotely sensed snow cover uncertainty are critical for its successful utilization. The Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover errors have been previously recognized to be associated with factors such as cloud contamination, snowpack grain sizes, vegetation cover, and topography; however, the quantitative relationship between the retrieval errors and these factors remains elusive. Joint analysis of the MODIS fractional snow cover (FSC) from Collection 6 (C6) and in situ air temperature and snow water equivalent measurements provides a unique look at the error structure of the MODIS C6 FSC products. Analysis of the MODIS FSC dataset over the period from 2000 to 2005 was undertaken over the continental United States (CONUS) with an extensive observational network. When compared to MODIS Collection 5 (C5) snow cover area, the MODIS C6 FSC product demonstrates a substantial improvement in detecting the presence of snow cover in Nevada [30% increase in probability of detection (POD)], especially in the early and late snow seasons; some improvement over California (10% POD increase); and a relatively small improvement over Colorado (2% POD increase). However, significant spatial and temporal variations in accuracy still exist, and a proxy is required to adequately predict the expected errors in MODIS C6 FSC retrievals. A relationship is demonstrated between the MODIS FSC retrieval errors and temperature over the CONUS domain, captured by a cumulative double exponential distribution function. This relationship is shown to hold for both in situ and modeled daily mean air temperature. Both of them are useful indices in filtering out the misclassification of MODIS snow cover pixels and in quantifying the errors in the MODIS C6 product for various hydrological applications.


2018 ◽  
Author(s):  
Mohamed Wassim Baba ◽  
Simon Gascoin ◽  
Christophe Kinnard ◽  
Ahmed Marchane ◽  
Lahoucine Hanich

The snow melt from the High Atlas represents a crucial water resource for crop irrigation in the semi-arid regions of Morocco. Recent studies have used assimilation of snow cover area (SCA) data from high resolution optical sensors to compute the snow water equivalent (SWE) and snow melt in other mountain regions. These techniques require large model ensembles and therefore a challenge is to determine the adequate model resolution, which yields accurate results with reasonable computation time. Here we study the sensitivity of an energy-balance model to the resolution of the model grid for a pilot catchment in the High Atlas. We used a time series of 8 m resolution SCA maps with an average revisit time of 7.5 days to evaluate the model results. The DEM was generated from Pléiades stereo-images and resampled from 8 m to 30 m, 90 m, 250 m, 500 m and 1000 m. The results indicate that the model performs well from 8 m to 250 m but the agreement with observations drops at 500 m. This is because significant features of the topography were too smoothed out to properly characterize the spatial variability of meteorological forcing, including solar radiation. We conclude that a resolution of 250 m might be sufficient in this area. This result is consistent with the shape of the semivariogram of the topographic slope, suggesting that this semivariogram analysis could be used to transpose our conclusion to other study regions.


2018 ◽  
Author(s):  
Simon Gascoin ◽  
Manuel Grizonnet ◽  
Marine Bouchet ◽  
Germain Salgues ◽  
Olivier Hagolle

Abstract. The Theia Snow collection routinely provides high resolution maps of the snow cover area from Sentinel-2 and Landsat-8 observations. The collection covers selected areas worldwide including the main mountain regions in Western Europe (e.g. Alps, Pyrenees) and the High Atlas in Morocco. Each product of the Snow collection contains four classes: snow, no-snow, cloud and no-data. We present the algorithm to generate the snow products and provide an evaluation of their accuracy using in situ snow depth measurements, higher resolution snow maps, and visual control. The results suggest that the snow is accurately detected in the Theia snow collection, and that the snow detection is more accurate than the sen2cor outputs (ESA level 2 product). An issue that should be addressed in a future release is the occurrence of false snow detection in some large clouds. The snow maps are currently produced and freely distributed in average 5 days after the image acquisition as raster and vector files via the Theia portal (http://doi.org/10.24400/329360/F7Q52MNK).


2010 ◽  
Vol 7 (3) ◽  
pp. 3189-3211 ◽  
Author(s):  
H.-Y. Li ◽  
J. Wang

Abstract. An energy balance method and remote sensing data were used to simulate snow distribution and melt in an alpine watershed in Northwestern China within a complete snow accumulation-melt period. Spatial energy budgets were simulated using the meteorological observations and digital elevation model of the watershed. A linear interpolation method was used to discriminate daily snow cover area under cloudy conditions, using Moderate Resolution Imaging Spectroradiometer data. Hourly snow distribution and melt, snow cover extent, and daily discharge were included in the simulated results. The bias error between field snow water equivalent samplings and simulated results is −2.1 cm, and Root Mean Square Error is 33.9 cm. The Nash and Sutcliffe efficiency statistic (R2) between measured and simulated discharges is 0.673, and the volume difference (Dv) is 3.9%. Using the method introduced in this article, modeling spatial snow distribution and melt runoff will become relatively convenient.


2020 ◽  
Vol 12 (18) ◽  
pp. 3058
Author(s):  
Mohamed Wassim Baba ◽  
Simon Gascoin ◽  
Olivier Hagolle ◽  
Elsa Bourgeois ◽  
Camille Desjardins ◽  
...  

The VENμS mission launched in 2017 provides multispectral optical images of the land surface with a 2-day revisit time at 5 m resolution for over 100 selected sites. A few sites are subject to seasonal snow accumulation, which gives the opportunity to monitor the variations of the snow cover area at unprecedented spatial and temporal resolution. However, the 12 spectral bands of VENμS only cover the visible and near-infrared region of the spectra while existing snow detection algorithms typically make use of a shortwave infrared band to determine the presence of snow. Here, we evaluate two alternative snow detection algorithms. The first one is based on a normalized difference index between the near-infrared and the visible bands, and the second one is based on a machine learning approach using the Theia Sentinel-2 snow products as training data. Both approaches are tested using Sentinel-2 data (as surrogate of VENμS data) as well as actual VENμS in the Pyrenees and the High Atlas. The results confirm the possibility of retrieving snow cover without SWIR with a slight loss in performance. As expected, the results confirm that the machine learning method provides better results than the index-based approach (e.g., an RMSE equal to the learning method 1.35% and for the index-based method 10.80% in the High Atlas.). The improvement is more evident in the Pyrenees probably due to the presence of vegetation which complicates the spectral signature of the snow cover area in VENμS images.


2018 ◽  
Vol 11 (1) ◽  
pp. 28 ◽  
Author(s):  
Aynom Teweldebrhan ◽  
John Burkhart ◽  
Thomas Schuler ◽  
Chong-Yu Xu

Remote sensing fractional snow cover area (fSCA) has been increasingly used to get an improved estimate of the spatiotemporal distribution of snow water equivalent (SWE) through reanalysis using different data assimilation (DA) schemes. Although the effective assimilation period of fSCA is well recognized in previous studies, little attention has been given to explicitly account for the relative significance of measurements in constraining model parameters and states. Timing of the more informative period varies both spatially and temporally in response to various climatic and physiographic factors. Here we use an automatic detection approach to locate the critical points in the time axis where the mean snow cover changes and where the melt-out period starts. The assimilation period was partitioned into three timing windows based on these critical points. A fuzzy coefficient was introduced in two ensemble-based DA schemes to take into account for the variability in informational value of fSCA observations with time. One of the DA schemes used in this study was the particle batch smoother (Pbs). The main challenge in Pbs and other Bayesian-based DA schemes is, that most of the weights are carried by few ensemble members. Thus, we also considered an alternative DA scheme based on the limits of acceptability concept (LoA) and certain hydrologic signatures and it has yielded an encouraging result. An improved estimate of SWE was also obtained in most of the analysis years as a result of introducing the fuzzy coefficients in both DA schemes. The most significant improvement was obtained in the correlation coefficient between the predicted and observed SWE values (site-averaged); with an increase by 8% and 16% after introducing the fuzzy coefficient in Pbs and LoA, respectively.


2006 ◽  
Vol 3 (6) ◽  
pp. 3655-3673 ◽  
Author(s):  
A. Ü. Şorman ◽  
Z. Akyürek ◽  
A. Şensoy ◽  
A. A. Şorman ◽  
A. E. Tekeli

Abstract. The MODerate-resolution Imaging Spectroradiometer (MODIS) snow cover product was evaluated by Parajka and Blösch (2006) over the territory of Austria. The spatial and temporal variability of the MODIS snow product classes are analyzed, the accuracy of the MODIS snow product against numerous in situ snow depth data are examined and the main factors that may influence the MODIS classification accuracy are identified in their studies. The authors of this paper would like to provide more discussion to the scientific community on the "Validation of MODIS snow cover images" when similar methodology is applied to mountainous regions covered with abundant snow but with limited number of ground survey and automated stations. Daily snow cover maps obtained from MODIS images are compared with ground observations in mountainous terrain of Turkey for the winter season of 2002–2003 and 2003–2004 during the accumulation and ablation periods of snow. Snow depth and density values are recorded to determine snow water equivalent values at 19 points in and around the study area in Turkey. Comparison of snow maps with in situ data show good agreement with overall accuracies in between 62 to 82 percent considering a 2-day shift during cloudy days. Studies show that the snow cover extent can be used for forecasting of runoff hydrographs resulting mostly from snowmelt for a mountainous basin in Turkey. MODIS-Terra snow albedo products are also compared with ground based measurements over the ablation stage of 2004 using the automated weather operating stations (AWOS) records at fixed locations as well as from the temporally assessed measuring sites during the passage of the satellite. Temporarily assessed 20 ground measurement sites are randomly distributed around one of the AWOS stations and both MODIS and ground data were aggregated in GIS for analysis. Reduction in albedo is noticed as snow depth decreased and SWE values increased.


Sign in / Sign up

Export Citation Format

Share Document