scholarly journals Improving the Informational Value of MODIS Fractional Snow Cover Area Using Fuzzy Logic Based Ensemble Smoother Data Assimilation Frameworks

2018 ◽  
Vol 11 (1) ◽  
pp. 28 ◽  
Author(s):  
Aynom Teweldebrhan ◽  
John Burkhart ◽  
Thomas Schuler ◽  
Chong-Yu Xu

Remote sensing fractional snow cover area (fSCA) has been increasingly used to get an improved estimate of the spatiotemporal distribution of snow water equivalent (SWE) through reanalysis using different data assimilation (DA) schemes. Although the effective assimilation period of fSCA is well recognized in previous studies, little attention has been given to explicitly account for the relative significance of measurements in constraining model parameters and states. Timing of the more informative period varies both spatially and temporally in response to various climatic and physiographic factors. Here we use an automatic detection approach to locate the critical points in the time axis where the mean snow cover changes and where the melt-out period starts. The assimilation period was partitioned into three timing windows based on these critical points. A fuzzy coefficient was introduced in two ensemble-based DA schemes to take into account for the variability in informational value of fSCA observations with time. One of the DA schemes used in this study was the particle batch smoother (Pbs). The main challenge in Pbs and other Bayesian-based DA schemes is, that most of the weights are carried by few ensemble members. Thus, we also considered an alternative DA scheme based on the limits of acceptability concept (LoA) and certain hydrologic signatures and it has yielded an encouraging result. An improved estimate of SWE was also obtained in most of the analysis years as a result of introducing the fuzzy coefficients in both DA schemes. The most significant improvement was obtained in the correlation coefficient between the predicted and observed SWE values (site-averaged); with an increase by 8% and 16% after introducing the fuzzy coefficient in Pbs and LoA, respectively.

2014 ◽  
Vol 15 (2) ◽  
pp. 551-562 ◽  
Author(s):  
Jiarui Dong ◽  
Mike Ek ◽  
Dorothy Hall ◽  
Christa Peters-Lidard ◽  
Brian Cosgrove ◽  
...  

Abstract Understanding and quantifying satellite-based, remotely sensed snow cover uncertainty are critical for its successful utilization. The Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover errors have been previously recognized to be associated with factors such as cloud contamination, snowpack grain sizes, vegetation cover, and topography; however, the quantitative relationship between the retrieval errors and these factors remains elusive. Joint analysis of the MODIS fractional snow cover (FSC) from Collection 6 (C6) and in situ air temperature and snow water equivalent measurements provides a unique look at the error structure of the MODIS C6 FSC products. Analysis of the MODIS FSC dataset over the period from 2000 to 2005 was undertaken over the continental United States (CONUS) with an extensive observational network. When compared to MODIS Collection 5 (C5) snow cover area, the MODIS C6 FSC product demonstrates a substantial improvement in detecting the presence of snow cover in Nevada [30% increase in probability of detection (POD)], especially in the early and late snow seasons; some improvement over California (10% POD increase); and a relatively small improvement over Colorado (2% POD increase). However, significant spatial and temporal variations in accuracy still exist, and a proxy is required to adequately predict the expected errors in MODIS C6 FSC retrievals. A relationship is demonstrated between the MODIS FSC retrieval errors and temperature over the CONUS domain, captured by a cumulative double exponential distribution function. This relationship is shown to hold for both in situ and modeled daily mean air temperature. Both of them are useful indices in filtering out the misclassification of MODIS snow cover pixels and in quantifying the errors in the MODIS C6 product for various hydrological applications.


2012 ◽  
Vol 3 (3) ◽  
pp. 1-20 ◽  
Author(s):  
Clayton J. Whitesides ◽  
Matthew H. Connolly

The disproportionate amount of water runoff from mountains to surrounding arid and semiarid lands has generated much research in snow water equivalent (SWE) modeling. A primary input in SWE models is snow covered area (SCA) which is generally obtained via satellite imagery. Mixed pixels in alpine snow studies complicate SCA measurements and can reduce accuracy. A simple method was developed to estimate fractional snow cover using freely available Landsat and data derived from DEMs, commercial and free software, as well as fuzzy classification and recursive partitioning. The authors attempted to develop a cost effective technique for estimating fractional snow cover for resource and recreation managers confined by limited budgets and resources. Results indicated that the method was non-sensitive (P = 0.426) to differences in leaf area index and solar radiation between 4 March 2000 and 13 March 2003. Fractional snow cover was predicted consistently despite variation in model parameters between years, indicating that the developed method may be a viable way for monitoring fractional snow cover in mountainous areas where capital and resources are limited.


Author(s):  
Mohamed Wassim Baba ◽  
Simon Gascoin ◽  
Lahoucine Hanich

The snow melt from the High Atlas is a critical water resource in Morocco. In spite of its importance, monitoring the spatio-temporal evolution of key snow cover properties like the snow water equivalent remains challenging due to the lack of in situ measurements at high elevation. Since 2015, the Sentinel-2 mission provides high spatial resolution images with a 5 day revisit time, which offers new opportunities to characterize snow cover distribution in mountain regions. Here we present a new data assimilation scheme to estimate the state of the snowpack without in situ data. The model was forced using MERRA-2 data and a particle filter was developed to dynamically reduce the biases in temperature and precipitation using Sentinel-2 observations of the snow cover area. The assimilation scheme was implemented using SnowModel, a distributed energy-balance snowpack model and tested in a pilot catchment in the High Atlas. The study period covers 2015-2016 snow season which corresponds to the first operational year of Sentinel-2A, therefore the full revisit capacity was not yet achieved. Yet, we show that the data assimilation led to a better agreement with independent observations of the snow height at an automatic weather station and the snow cover extent from MODIS. The performance of the data assimilation scheme should benefit from the continuous improvements in MERRA-2 reanalyses and the full revisit capacity of Sentinel-2.


2018 ◽  
Vol 10 (12) ◽  
pp. 1982 ◽  
Author(s):  
Mohamed Baba ◽  
Simon Gascoin ◽  
Lahoucine Hanich

The snow melt from the High Atlas is a critical water resource in Morocco. In spite of its importance, monitoring the spatio-temporal evolution of key snow cover properties like the snow water equivalent remains challenging due to the lack of in situ measurements at high elevation. Since 2015, the Sentinel-2 mission provides high spatial resolution images with a 5 day revisit time, which offers new opportunities to characterize snow cover distribution in mountain regions. Here we present a new data assimilation scheme to estimate the state of the snowpack without in situ data. The model was forced using MERRA-2 data and a particle filter was developed to dynamically reduce the biases in temperature and precipitation using Sentinel-2 observations of the snow cover area. The assimilation scheme was implemented using SnowModel, a distributed energy-balance snowpack model and tested in a pilot catchment in the High Atlas. The study period covers 2015-2016 snow season which corresponds to the first operational year of Sentinel-2A, therefore the full revisit capacity was not yet achieved. Yet, we show that the data assimilation led to a better agreement with independent observations of the snow height at an automatic weather station and the snow cover extent from MODIS. The performance of the data assimilation scheme should benefit from the continuous improvements of MERRA-2 reanalysis and the full revisit capacity of Sentinel-2.


2017 ◽  
Vol 11 (4) ◽  
pp. 1647-1664 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F. P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of) SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF). Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.


2014 ◽  
Vol 14 (23) ◽  
pp. 32233-32323 ◽  
Author(s):  
M. Bocquet ◽  
H. Elbern ◽  
H. Eskes ◽  
M. Hirtl ◽  
R. Žabkar ◽  
...  

Abstract. Data assimilation is used in atmospheric chemistry models to improve air quality forecasts, construct re-analyses of three-dimensional chemical (including aerosol) concentrations and perform inverse modeling of input variables or model parameters (e.g., emissions). Coupled chemistry meteorology models (CCMM) are atmospheric chemistry models that simulate meteorological processes and chemical transformations jointly. They offer the possibility to assimilate both meteorological and chemical data; however, because CCMM are fairly recent, data assimilation in CCMM has been limited to date. We review here the current status of data assimilation in atmospheric chemistry models with a particular focus on future prospects for data assimilation in CCMM. We first review the methods available for data assimilation in atmospheric models, including variational methods, ensemble Kalman filters, and hybrid methods. Next, we review past applications that have included chemical data assimilation in chemical transport models (CTM) and in CCMM. Observational data sets available for chemical data assimilation are described, including surface data, surface-based remote sensing, airborne data, and satellite data. Several case studies of chemical data assimilation in CCMM are presented to highlight the benefits obtained by assimilating chemical data in CCMM. A case study of data assimilation to constrain emissions is also presented. There are few examples to date of joint meteorological and chemical data assimilation in CCMM and potential difficulties associated with data assimilation in CCMM are discussed. As the number of variables being assimilated increases, it is essential to characterize correctly the errors; in particular, the specification of error cross-correlations may be problematic. In some cases, offline diagnostics are necessary to ensure that data assimilation can truly improve model performance. However, the main challenge is likely to be the paucity of chemical data available for assimilation in CCMM.


Author(s):  
Rui Zhang ◽  
Zongxue Xu ◽  
Depeng Zuo ◽  
Chunguang Ban

Abstract Snow cover is highly sensitive to global climate change and strongly influences the climate at global and regional scales. Because of limited in situ observations, snow cover dynamics in the Nyang River basin (NRB) have been examined in few studies. Five snow cover indices derived from observation and remote sensing data from 2000 to 2018 were used to investigate the spatial and temporal variation of snow cover in the NRB. There was clear seasonality in the snow cover throughout the entire basin. The maximum snow-covered area was 8,751.35 km2, about 50% of the total basin area, and occurred in March. The maximum snow depth (SD) was 5.35 cm and was found at the northern edge of the middle reaches of the basin. Snow cover frequency, SD, and fraction of snow cover area increased with elevation. The decrease in SD was the most marked in the elevation range of 5,000–6,000 m. Above 6,000 m, the snow water equivalent showed a slight upward trend. There was a significant negative correlation between snow cover and temperature. The results of this study could improve our understanding of changes in snow cover in the NRB from multivariate perspectives. It is better for water resources management.


2013 ◽  
pp. 1953-1973
Author(s):  
Clayton J. Whitesides ◽  
Matthew H. Connolly

The disproportionate amount of water runoff from mountains to surrounding arid and semiarid lands has generated much research in snow water equivalent (SWE) modeling. A primary input in SWE models is snow covered area (SCA) which is generally obtained via satellite imagery. Mixed pixels in alpine snow studies complicate SCA measurements and can reduce accuracy. A simple method was developed to estimate fractional snow cover using freely available Landsat and data derived from DEMs, commercial and free software, as well as fuzzy classification and recursive partitioning. The authors attempted to develop a cost effective technique for estimating fractional snow cover for resource and recreation managers confined by limited budgets and resources. Results indicated that the method was non-sensitive (P = 0.426) to differences in leaf area index and solar radiation between 4 March 2000 and 13 March 2003. Fractional snow cover was predicted consistently despite variation in model parameters between years, indicating that the developed method may be a viable way for monitoring fractional snow cover in mountainous areas where capital and resources are limited.


2019 ◽  
Vol 23 (5) ◽  
pp. 2439-2459
Author(s):  
Katrina E. Bennett ◽  
Jessica E. Cherry ◽  
Ben Balk ◽  
Scott Lindsey

Abstract. Remotely sensed snow cover observations provide an opportunity to improve operational snowmelt and streamflow forecasting in remote regions. This is particularly true in Alaska, where remote basins and a spatially and temporally sparse gaging network plague efforts to understand and forecast the hydrology of subarctic boreal basins and where climate change is leading to rapid shifts in basin function. In this study, the operational framework employed by the United States (US) National Weather Service, including the Alaska Pacific River Forecast Center, is adapted to integrate Moderate Resolution Imaging Spectroradiometer (MODIS) remotely sensed observations of fractional snow cover area (fSCA) to determine if these data improve streamflow forecasts in interior Alaska river basins. Two versions of MODIS fSCA are tested against a base case extent of snow cover derived by aerial depletion curves: the MODIS 10A1 (MOD10A1) and the MODIS Snow Cover Area and Grain size (MODSCAG) product over the period 2000–2010. Observed runoff is compared to simulated runoff to calibrate both iterations of the model. MODIS-forced simulations have improved snow depletion timing compared with snow telemetry sites in the basins, with discernable increases in skill for the streamflow simulations. The MODSCAG fSCA version provides moderate increases in skill but is similar to the MOD10A1 results. The basins with the largest improvement in streamflow simulations have the sparsest streamflow observations. Considering the numerous low-quality gages (discontinuous, short, or unreliable) and ungauged systems throughout the high-latitude regions of the globe, this result is valuable and indicates the utility of the MODIS fSCA data in these regions. Additionally, while improvements in predicted discharge values are subtle, the snow model better represents the physical conditions of the snowpack and therefore provides more robust simulations, which are consistent with the US National Weather Service's move toward a physically based National Water Model. Physically based models may also be more capable of adapting to changing climates than statistical models corrected to past regimes. This work provides direction for both the Alaska Pacific River Forecast Center and other forecast centers across the US to implement remote-sensing observations within their operational framework, to refine the representation of snow, and to improve streamflow forecasting skill in basins with few or poor-quality observations.


Sign in / Sign up

Export Citation Format

Share Document