scholarly journals Potential of Wind Energy Development for Water Abstraction Systems in Developing Country Context: A Case of Teso Sub-Region of Uganda

Author(s):  
James Tondo Kasozi ◽  
Nicholas Kiggundu ◽  
Joshua Wanyama ◽  
Noble Banadda

Wind energy powered pumps could be an alternative to conventional fuel powered pumps for water abstraction because they rely on a free energy and they are environmentally friendly. The objective of this study was to assess the potential of wind energy to operate water abstraction systems in Teso sub-region of Uganda for livestock watering Daily mean wind speeds recorded at a height of 10 m for a period of ten years (2005–2015) were collected from Amuria and Soroti Meteorological stations in the study area. Data were analyzed using Weibull distribution to evaluate the annual wind speed frequency distributions and consequently assess their potential for water abstraction. The results indicated that warmer months (January, February and March) have higher mean wind speeds than the cold months (August, September and October). High wind speeds in the dry seasons corresponded to the periods of high water demand. The highest shape parameter (k) of 3.07 was registered in 2009 and scale parameter (c) of 3.78 in 2012. The highest wind power density of 43 W/m2 was obtained the year 2012 while the lowest wind power density of 15.47 W/m2 was obtained for Soroti district in the year 2009. The maximum power extractable in Amuria in 2012 was 324 W/m2 which is potentially enough for water abstraction. Maximum discharges of 1.86 m3/s and 1.52 m3/s were obtained for Amuria and Soroti districts respectively at mean wind speeds of 5 m/s. Therefore, Teso sub region winds have potential for water abstraction and Amuria district better sites for livestock watering using wind energy.

2021 ◽  
pp. 0309524X2110438
Author(s):  
Carlos Méndez ◽  
Yusuf Bicer

The present study analyzes the wind energy potential of Qatar, by generating a wind atlas and a Wind Power Density map for the entire country based on ERA-5 data with over 41 years of measurements. Moreover, the wind speeds’ frequency and direction are analyzed using wind recurrence, Weibull, and wind rose plots. Furthermore, the best location to install a wind farm is selected. The results indicate that, at 100 m height, the mean wind speed fluctuates between 5.6054 and 6.5257 m/s. Similarly, the Wind Power Density results reflect values between 149.46 and 335.06 W/m2. Furthermore, a wind farm located in the selected location can generate about 59.7437, 90.4414, and 113.5075 GWh/y electricity by employing Gamesa G97/2000, GE Energy 2.75-120, and Senvion 3.4M140 wind turbines, respectively. Also, these wind farms can save approximately 22,110.80, 17,617.63, and 11,637.84 tons of CO2 emissions annually.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
N. Laban Ongaki ◽  
Christopher M. Maghanga ◽  
Joash Kerongo

Background. Global warming is a growing threat in the world today mainly due to the emission of CO2 caused by the burning of fossil fuel. Consequently, countries are being forced to seek potential alternative sources of energy such as wind, solar, and photovoltaic among many others. However, the realization of their benefits is faced with challenges. Though wind stands a chance to solve this problem, the lack of adequate site profiles, long-term behavioural information, and specific data information that enables informed choice on site selection, turbine selection, and expected power output has remained a challenge to its exploitation. In this research, Weibull and Rayleigh models are adopted. Wind speeds were analyzed and characterized in the short term and then simulated for a long-term measured hourly series data of daily wind speeds at a height of 10 m. The analysis included daily wind data which was grouped into discrete data and then calculated to represent the mean wind speed, diurnal variations, daily variations, and monthly variations. To verify the models, statistical tools of Chi square, RMSE, MBE, and correlational coefficient were applied. Also, the method of measure, correlate, and predict was adopted to check for the reliability of the data used. The wind speed frequency distribution at the height of 10 m was found to be 2.9 ms-1 with a standard deviation of 1.5. From the six months’ experiments, averages of wind speeds at hub heights of 10 m were calculated and found to be 1.7 m/s, 2.4 m/s, and 1.3 m/s, for Ikobe, Kisii University, and Nyamecheo stations, respectively. The wind power density of the region was found to be 29 W/m2. By a narrow margin, Rayleigh proves to be a better method over Weibull in predicting wind power density in the region. Wind speeds at the site are noted to be decreasing over the years. The region is shown as marginal on extrapolation to 30 m for wind energy generation hence adequate for nongrid connected electrical and mechanical applications. The strong correlation between the site wind profiles proves data reliability. The gradual decrease of wind power over the years calls for attention.


2021 ◽  
Author(s):  
Y. Al-Douri ◽  
S. A. Waheeb

Abstract Background: the purpose of this study is to estimate the winds, its erosion and wind power of Kingdom of Saudi Arabia. The additional value is to details wind energy in Saudi Arabia indulging updated wind speed analysis, wind speed frequency distribution and mean wind power density variation to present novel work could be added to the literature providing recent data helping for future researches and studies. Results: the updated analysis and distribution of wind energy are presented in six sites; Al Jouf, Hafar Al Batin, Riyadh, Al Wajh, Jeddah South and Sharurah of Saudi Arabia. The winds and wind energy are elaborated. The long-term annual mean values of wind speeds are found to vary between year 2000 and 2020. The annual values of wind power density are varied between year 2006 and 2020. Also, the wind speeds are researched over the entire geography of Saudi Arabia. The percent frequency distribution at different wind speeds for the mentioned six sites at 12 m for two decades is displayed. Conclusions: the long-term values of wind speed were found between 3.3 m/s in 2000 and 5 m/s in 2020. The annual wind power density values were varied between 44 W/m2 in 2006 and 88 W/m2 in 2020. In addition, the wind speeds were researched over the entire Saudi Arabia for east, north, west and south. The deduced percent frequency distribution was less than 18% of the time at 12 m.


2020 ◽  
Vol 20 (2) ◽  
pp. 143-153
Author(s):  
Nguyen Xuan Tung ◽  
Do Huy Cuong ◽  
Bui Thi Bao Anh ◽  
Nguyen Thi Nhan ◽  
Tran Quang Son

Since the East Vietnam Sea has an advantageous geographical location and rich natural resources, we can develop and manage islands and reefs in this region reasonably to declare national sovereignty. Based on 1096 scenes of QuikSCAT wind data of 2006–2009, wind power density at 10 m hight is calculated to evaluate wind energy resources of the East Vietnam Sea. With a combination of wind power density at 70 m hight calculated according to the power law of wind energy profile and reef flats extracted from 35 scenes of Landsat ETM+ images, installed wind power capacity of every island or reef is estimated to evaluate wind power generation of the East Vietnam Sea. We found that the wind power density ranges from levels 4–7, so that the wind energy can be well applied to wind power generation. The wind power density takes on a gradually increasing trend in seasons. Specifically, the wind power density is lower in spring and summer, whereas it is higher in autumn and winter. Among islands and reefs in the East Vietnam Sea, the installed wind power capacity of Hoang Sa archipelago is highest in general, the installed wind power capacity of Truong Sa archipelago is at the third level. The installed wind power capacity of Discovery Reef, Bombay Reef, Tree island, Lincoln island, Woody Island of Hoang Sa archipelago and Mariveles Reef, Ladd Reef, Petley Reef, Cornwallis South Reef of Truong Sa archipelago is relatively high, and wind power generation should be developed on these islands first.


Author(s):  
Darko Koracin ◽  
Richard L. Reinhardt ◽  
Marshall B. Liddle ◽  
Travis McCord ◽  
Domagoj Podnar ◽  
...  

The main objectives of the study were to support wind energy assessment for all of Nevada by providing two annual cycles of high-resolution mesoscale modeling evaluated by data from surface stations and towers, estimating differences between these annual cycles and standard wind maps, and providing wind and wind power density statistics at elevations relevant to turbine operations. In addition to the 65 existing Remote Automated Weather Stations in Nevada, four 50-m-tall meteorological towers were deployed in western Nevada to capture long-term wind characteristics and provide database input to verify and improve modeling results. The modeling methodology using Mesoscale Model 5 (MM5) was developed to provide wind and wind power density estimates representing mesoscale effects that include actual synoptic forcing during the two annual cycles (horizontal resolution on the order of 2 and 3 km). The results from the two annual simulation cycles show similar wind statistics with an average difference of less than 100 W/m2. The available TrueWind results for the wind power density at 50 m show greater values of wind power density compared to both MM5-simulated annual cycles for most of the area. However, mainly in the Sierras and the mountainous regions of southern and eastern Nevada, the MM5 simulations indicate greater values for wind power density. The results of this study suggest that the synthesis of the data from a network of tower observations and high-resolution mesoscale modeling is a crucial tool for assessing the wind power density in Nevada and, more generally, other topographically developed areas.


2019 ◽  
Vol 38 (1) ◽  
pp. 175-200 ◽  
Author(s):  
Shafiqur Rehman ◽  
Narayanan Natarajan ◽  
Mangottiri Vasudevan ◽  
Luai M Alhems

Wind energy is one of the abundant, cheap and fast-growing renewable energy sources whose intensive extraction potential is still in immature stage in India. This study aims at the determination and evaluation of wind energy potential of three cities located at different elevations in the state of Tamil Nadu, India. The historical records of wind speed, direction, temperature and pressure were collected for three South Indian cities, namely Chennai, Erode and Coimbatore over a period of 38 years (1980-2017). The mean wind power density was observed to be highest at Chennai (129 W/m2) and lowest at Erode (76 W/m2) and the corresponding mean energy content was highest for Chennai (1129 kWh/m2/year) and lowest at Erode (666 kWh/m2/year). Considering the events of high energy-carrying winds at Chennai, Erode and Coimbatore, maximum wind power density were estimated to be 185 W/m2, 190 W/m2 and 234 W/m2, respectively. The annual average net energy yield and annual average net capacity factor were selected as the representative parameters for expressing strategic wind energy potential at geographically distinct locations having significant variation in wind speed distribution. Based on the analysis, Chennai is found to be the most suitable site for wind energy production followed by Coimbatore and Erode.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1846 ◽  
Author(s):  
Teklebrhan Negash ◽  
Erik Möllerström ◽  
Fredric Ottermo

This paper presents the wind energy potential and wind characteristics for 25 wind sites in Eritrea, based on wind data from the years 2000–2005. The studied sites are distributed all over Eritrea, but can roughly be divided into three regions: coastal region, western lowlands, and central highlands. The coastal region sites have the highest potential for wind power. An uncertainty, due to extrapolating the wind speed from the 10-m measurements, should be noted. The year to year variations are typically small and, for the sites deemed as suitable for wind power, the seasonal variations are most prominent in the coastal region with a peak during the period November–March. Moreover, Weibull parameters, prevailing wind direction, and wind power density recalculated for 100 m above ground are presented for all 25 sites. Comparing the results to values from the web-based, large-scale dataset, the Global Wind Atlas (GWA), both mean wind speed and wind power density are typically higher for the measurements. The difference is especially large for the more complex-terrain central highland sites where GWA results are also likely to be more uncertain. The result of this study can be used to make preliminary assessments on possible power production potential at the given sites.


2020 ◽  
pp. 014459872092074 ◽  
Author(s):  
Muhammad Sumair ◽  
Tauseef Aized ◽  
Syed Asad Raza Gardezi ◽  
Syed Ubaid Ur Rehman ◽  
Syed Muhammad Sohail Rehman

Current work focusses on the wind potential assessment in South Punjab. Eleven locations from South Punjab have been analyzed using two-parameter Weibull model (with Energy Pattern Factor Method to estimate Weibull parameters) and five years (2014–2018) hourly wind data measured at 50 m height and collected from Pakistan Meteorological Department. Techno-economic analysis of energy production using six different turbine models was carried out with the purpose of presenting a clear picture about the importance of turbine selection at particular location. The analysis showed that Rahim Yar Khan carries the highest wind speed, highest wind power density, and wind energy density with values 4.40 ms−1, 77.2 W/m2 and 677.76 kWh/m2/year, respectively. On the other extreme, Bahawalnagar observes the least wind speed i.e. 3.60 ms−1 while Layyah observes the minimum wind power density and wind energy density as 38.96 W/m2 and 352.24 kWh/m2/year, respectively. According to National Renewable Energy Laboratory standards, wind potential ranging from 0 to 200 W/m2 is considered poor. Economic assessment was carried out to find feasibility of the location for energy harvesting. Finally, Polar diagrams drawn to show the optimum wind blowing directions shows that optimum wind direction in the region is southwest.


2012 ◽  
pp. 29-33
Author(s):  
S. Asghar Gholamian ◽  
S. Bagher Soltani ◽  
R. Ilka

First step for achieving wind energy is to locate points with appropriate wind power density in a country. Wind data which are recorded in a synoptic weather station, are the best way to study the wind potential of an area. In this paper wind speed period of Baladeh synoptic weather station is studied, since it has the maximum average of wind speed among 15 stations of the MAZANDARAN Province. Weibull factors k and c are calculated for 40 months from September 2006 to December 2009 and wind power density is determined based on these data. The total average of factors k and c for a height for 50 m are 1.442 m/s and 5.1256 respectively. By using the average of factors, wind power density in 50 m height will be 147.40 watt/m2 which is categorized as weak potential in wind class. However by monthly investigation it is shown that with a 50 m wind, this station can be put in medium class in hot months of the year.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Alhassan A. Teyabeen ◽  
Fathi R. Akkari ◽  
Ali E. Jwaid ◽  
Ashraf Zaghwan ◽  
Rehab Abodelah

To assess the wind energy potential at any site, the wind power density should be estimated; it evaluates the wind resource and indicates the amount of available wind energy. The purpose of this study is to estimate the monthly and annual wind power density based on the Weibull distribution using wind speed data collected in Zwara, Libya during 2007. The wind date are measured at the three hub heights of 10m, 30m, and 50m above ground level, and recorded every 10 minutes. The analysis showed that the annual average wind speed are 4.51, 5.86, 6.26 m/s for the respective mentioned heights. The average annual wind power densities at the mentioned heights were 113.71, 204.19, 243.48 , respectively.


Sign in / Sign up

Export Citation Format

Share Document