scholarly journals Electrochemical Formation and Evaluation of Poly-9,10-Phenanthrenequinone of Layer

Author(s):  
Arunas Ramanavicius ◽  
Povilas Genys ◽  
Elif Aksun ◽  
Aušra Valiūnienė ◽  
Almira Ramanaviciene

A 9,10-phenanthrenequinone (PQ) was electrochemically polymerized on a graphite rod electrode using potential cycling. The electrode modified by poly-9,10-phenanthrenequinone (poly-PQ) was studied by means of cyclic voltammetry, electrochemical impedance spectroscopy, atomic force microscopy and scanning electron microscopy. The poly-PQ shows variations in growth pattern depending on the number of potential cycles for the initiation of polymerization. Formed poly-PQ layer demonstrates good electric conductivity, great electrochemical capacitance and unique oxidation/reduction properties, which are suitable for broad technological applications, including applicability in biosensors, supercapacitors, and in some other electrochemical systems.

Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 702 ◽  
Author(s):  
Povilas Genys ◽  
Elif Aksun ◽  
Alla Tereshchenko ◽  
Aušra Valiūnienė ◽  
Almira Ramanaviciene ◽  
...  

In this research, a 9,10-phenanthrenequinone (PQ) was electrochemically polymerized on a graphite rod electrode using potential cycling. The electrode modified by poly-9,10-phenanthrenequinone (poly-PQ) was studied by means of cyclic voltammetry, electrochemical impedance spectroscopy, atomic force microscopy and scanning electron microscopy. The poly-PQ shows variations in growth pattern depending on the number of potential cycles for the initiation of polymerization. Formed poly-PQ layer demonstrates good electric conductivity, great degree of electrochemical capacitance and unique oxidation/reduction properties, which are suitable for broad technological applications, including applicability in biosensors, supercapacitors and in some other electrochemical systems.


2021 ◽  
Author(s):  
Petar Stanić ◽  
◽  
Nataša Vukićević ◽  
Vesna Cvetković ◽  
Miroslav Pavlović ◽  
...  

Four 2-thiohydantoin derivatives were synthesized and their corrosion inhibition properties on mild steel (MS) in 0.5M HCl solution was evaluated using usual gravimetric and electrochemical methods (weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS). Morphology of the metal surface was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The study has shown that these compounds provide good protection for mild steel against corrosion in the acidic medium.


2017 ◽  
Author(s):  
◽  
F. C García-Rueda

This paper presents the characterization by the infrared technique, atomic force microscopy, scanning electron microscopy and contact angle of the polymer coatings of the binary mixture of polycaprolactone-chitosan and its modification after addition of collagen were deposited by the technique of Dip Coating on Ti6Al4V alloy; also by the technique of Electrochemical Impedance Spectroscopy were evaluated the Ti6Al4V alloy coated by polymer blends zero days immersion in Simulate Bode Fluid and of adsorptivity calcium to 21 days immersion. Thus, representative effects on the role of collagen to increase the surface roughness, higher values in the polarization resistance of Ti6Al4V, better behavior parameters free energy, atomic adsorption of calcium and the consolidation of a found new interface associated with the monolayer calcium simulated by equivalent circuits and observed by Scanning Electron Microscopy.


2017 ◽  
Author(s):  
◽  
F. C. García-Rueda

This paper presents the characterization by the infrared technique, atomic force microscopy, scanning electron microscopy and contact angle of the polymer coatings of the binary mixture of polycaprolactone-chitosan and its modification after addition of collagen were deposited by the technique of Dip Coating on Ti6Al4V alloy; also by the technique of Electrochemical Impedance Spectroscopy were evaluated the Ti6Al4V alloy coated by polymer blends zero days immersion in Simulate Bode Fluid and of adsorptivity calcium to 21 days immersion. Thus, representative effects on the role of collagen to increase the surface roughness, higher values in the polarization resistance of Ti6Al4V, better behavior parameters free energy, atomic adsorption of calcium and the consolidation of a found new interface associated with the monolayer calcium simulated by equivalent circuits and observed by Scanning Electron Microscopy.


2017 ◽  
Vol 68 (11) ◽  
pp. 2700-2703 ◽  
Author(s):  
Kamel Earar ◽  
Vasile Iulian Antoniac ◽  
Sorana Baciu ◽  
Simion Bran ◽  
Florin Onisor ◽  
...  

This study examined and compared surface of human dentine after acidic etching with hydrogen peroxide, phosphoric acid liquid and gel. Surface demineralization of dentin is necessary for a strong bond of adhesive at dental surface. Split human teeth were used. After application of mentioned substances at dentin level measures of the contact angle and surface morphology were employed. Surface morphology was analyzed with the help of scanning electron microscopy and atomic force microscopy. Liquid phosphoric acid yielded highest demineralization showing better hydrophobicity than the rest, thus having more contact surface. Surface roughness are less evident and formed surface micropores of 4 �m remained open after wash and air dry providing better adhesive canalicular penetration and subsequent bond.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 652
Author(s):  
Divine Sebastian ◽  
Chun-Wei Yao ◽  
Lutfun Nipa ◽  
Ian Lian ◽  
Gary Twu

In this work, a mechanically durable anticorrosion superhydrophobic coating is developed using a nanocomposite coating solution composed of silica nanoparticles and epoxy resin. The nanocomposite coating developed was tested for its superhydrophobic behavior using goniometry; surface morphology using scanning electron microscopy and atomic force microscopy; elemental composition using energy dispersive X-ray spectroscopy; corrosion resistance using atomic force microscopy; and potentiodynamic polarization measurements. The nanocomposite coating possesses hierarchical micro/nanostructures, according to the scanning electron microscopy images, and the presence of such structures was further confirmed by the atomic force microscopy images. The developed nanocomposite coating was found to be highly superhydrophobic as well as corrosion resistant, according to the results from static contact angle measurement and potentiodynamic polarization measurement, respectively. The abrasion resistance and mechanical durability of the nanocomposite coating were studied by abrasion tests, and the mechanical properties such as reduced modulus and Berkovich hardness were evaluated with the aid of nanoindentation tests.


Sign in / Sign up

Export Citation Format

Share Document