scholarly journals Gravitation: Immediate Action at a Distance or Close Up Events?

Author(s):  
Harmen Henricus Hollestelle

Is immediate action at a distance, like gravitational attraction, imaginable using the contrary concept of close up, tactile, events? Tactile events, defined with the term ‘tap-tapping’ as a blind man does, described in a two-way spiritual interaction theory, are implemented in physics to understand gravitation from this respect. The quantum mechanical wave function reduction during measurements receives a new approach. Formulated is a new proof for Einstein’s Equivalence Principle, extending it beyond locality, and a sketch of how tactile interaction could explain dark energy and an accelerated expansion of the universe. Dark energy and dark matter are examples starting from which to discuss properties of matter and space and gravitation as immediate tactile action rather than mediated action such as electromagnetism.

Author(s):  
Michael Kachelriess

The contribution of vacuum fluctuations to the cosmological constant is reconsidered studying the dependence on the used regularisation scheme. Then alternative explanations for the observed accelerated expansion of the universe in the present epoch are introduced which either modify gravity or add a new component of matter, dubbed dark energy. The chapter closes with some comments on attempts to quantise gravity.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 163
Author(s):  
Verónica Motta ◽  
Miguel A. García-Aspeitia ◽  
Alberto Hernández-Almada ◽  
Juan Magaña ◽  
Tomás Verdugo

The accelerated expansion of the Universe is one of the main discoveries of the past decades, indicating the presence of an unknown component: the dark energy. Evidence of its presence is being gathered by a succession of observational experiments with increasing precision in its measurements. However, the most accepted model for explaining the dynamic of our Universe, the so-called Lambda cold dark matter, faces several problems related to the nature of such energy component. This has led to a growing exploration of alternative models attempting to solve those drawbacks. In this review, we briefly summarize the characteristics of a (non-exhaustive) list of dark energy models as well as some of the most used cosmological samples. Next, we discuss how to constrain each model’s parameters using observational data. Finally, we summarize the status of dark energy modeling.


2007 ◽  
Vol 16 (10) ◽  
pp. 1641-1651 ◽  
Author(s):  
RAM GOPAL VISHWAKARMA

Dark energy and the accelerated expansion of the universe have been the direct predictions of the distant supernovae Ia observations which are also supported, indirectly, by the observations of the CMB anisotropies, gravitational lensing and the studies of galaxy clusters. Today these results are accommodated in what has become the concordance cosmology: a universe with flat spatial sections t = constant with about 70% of its energy in the form of Einstein's cosmological constant Λ and about 25% in the form of dark matter (made of perhaps weakly-interacting massive particles). Though the composition is weird, the theory has shown remarkable successes at many fronts. However, we find that as more and more supernovae Ia are observed, more accurately and towards higher redshift, the probability that the data are well-explained by the cosmological models decreases alarmingly, finally ruling out the concordance model at more than 95% confidence level. This raises doubts against the "standard candle"-hypothesis of the supernovae Ia and their use in constraining the cosmological models. We need a better understanding of the entire SN Ia phenomenon in order to extract cosmological consequences from them.


2009 ◽  
Vol 24 (22) ◽  
pp. 1785-1792 ◽  
Author(s):  
B. NAYAK ◽  
L. P. SINGH

The present-day accelerated expansion of the universe is naturally addressed within the Brans–Dicke theory just by using holographic dark energy model with inverse of Hubble scale as IR cutoff and power law temporal behavior of scale factor. It is also concluded that if the universe continues to expand, then one day it might be completely filled with dark energy.


2014 ◽  
Vol 29 (02) ◽  
pp. 1450015 ◽  
Author(s):  
M. SHARIF ◽  
SHAMAILA RANI

This paper is devoted to study the power-law entropy corrected holographic dark energy (ECHDE) model in the framework of f(T) gravity. We assume infrared (IR) cutoff in terms of Granda–Oliveros (GO) length and discuss the constructed f(T) model in interacting as well as in non-interacting scenarios. We explore some cosmological parameters like equation of state (EoS), deceleration, statefinder parameters as well as ωT–ωT′ analysis. The EoS and deceleration parameters indicate phantom behavior of the accelerated expansion of the universe. It is mentioned here that statefinder trajectories represent consistent results with ΛCDM limit, while evolution trajectory of ωT–ωT′ phase plane does not approach to ΛCDM limit for both interacting and non-interacting cases.


2016 ◽  
Vol 25 (02) ◽  
pp. 1650025 ◽  
Author(s):  
Giovanni Otalora

Although equivalent to general relativity, teleparallel gravity (TG) is conceptually speaking a completely different theory. In this theory, the gravitational field is described by torsion, not by curvature. By working in this context, a new model is proposed in which the four-derivative of a canonical scalar field representing dark energy is nonminimally coupled to the “vector torsion”. This type of coupling is motivated by the fact that a scalar field couples to torsion through its four-derivative, which is consistent with local spacetime kinematics regulated by the de Sitter group [Formula: see text]. It is found that the current state of accelerated expansion of the universe corresponds to a late-time attractor that can be (i) a dark energy-dominated de Sitter solution ([Formula: see text]), (ii) a quintessence-type solution with [Formula: see text], or (iii) a phantom-type [Formula: see text] dark energy.


2008 ◽  
Vol 17 (03n04) ◽  
pp. 651-658 ◽  
Author(s):  
WINFRIED ZIMDAHL

Different models of the cosmic substratum which pretend to describe the present stage of accelerated expansion of the Universe, like the ΛCDM model or the Chaplygin gas, can be seen as special realizations of a holographic dark energy cosmology if the option of an interaction between pressureless dark matter and dark energy is taken seriously. The corresponding interaction strength parameter plays the role of a cosmological constant. Differences occur at the perturbative level. In particular, the pressure perturbations are intrinsically nonadiabatic.


2021 ◽  
Author(s):  
Mark Zilberman ◽  

“Doppler boosting” is a well-known relativistic effect that alters the apparent luminosity of approaching radiation sources. “Doppler de-boosting” is the same relativistic effect observed but for receding light sources (e.g. relativistic jets of AGN and GRB). “Doppler boosting” alters the apparent luminosity of approaching light sources to appear brighter, while “Doppler de-boosting” alters the apparent luminosity of receding light sources to appear fainter. While “Doppler de-boosting” has been successfully accounted for and observed in relativistic jets of AGN, it was ignored in the establishment of Standard candles for cosmological distances. A Standard Candle adjustment of Z>0.1 is necessary for “Doppler de-boosting”, otherwise we would incorrectly assume that Standard Candles appear dimmer, not because of “Doppler de-boosting” but because of the excessive distance, which would affect the entire Standard Candles ladder at cosmological distances. The ratio between apparent (L) and intrinsic (Lo) luminosities as a function of the redshift Z and spectral index α is given by the formula ℳ(Z) = L/Lo=(Z+1)α -3 and for Type Ia supernova appears as ℳ(Z) = L/Lo=(Z+1)-2. “Doppler de-boosting” may also explain the anomalously low luminosity of objects with a high Z without the introduction of an accelerated expansion of the Universe and Dark Energy.


Sign in / Sign up

Export Citation Format

Share Document