scholarly journals Gesture-Based Control of a Robot Arm with Neuromorphic Haptic Feedback

Author(s):  
Francesca Sorgini ◽  
Giuseppe Airò Farulla ◽  
Nikola Lukic ◽  
Ivan Danilov ◽  
Bozica Bojovic ◽  
...  

Research on bidirectional human-machine interfaces will enable the smooth interaction with robotic platforms in contexts ranging from industry to tele-medicine and rescue. This paper introduces a bidirectional communication system to achieve multisensory telepresence during the gestural control of an industrial robotic arm. We complement the gesture-based control by means of a tactile-feedback strategy grounding on a spiking artificial neuron model. Force and motion from the robot are converted in neuromorphic haptic stimuli delivered on the user’s hand through a vibro-tactile glove. Untrained personnel participated in an experimental task benchmarking a pick-and-place operation. The robot end-effector was used to sequentially press six buttons, illuminated according to a random sequence, and comparing the tasks executed without and with tactile feedback. The results demonstrated the reliability of the hand tracking strategy developed for controlling the robotic arm, and the effectiveness of a neuronal spiking model for encoding hand displacement and exerted forces in order to promote a fluid embodiment of the haptic interface and control strategy. The main contribution of this paper is in presenting a robotic arm under gesture-based remote control with multisensory telepresence, demonstrating for the first time that a spiking haptic interface can be used to effectively deliver on the skin surface a sequence of stimuli emulating the neural code of the mechanoreceptors beneath.

2013 ◽  
Vol 837 ◽  
pp. 543-548 ◽  
Author(s):  
Silviu Butnariu ◽  
Florin Gîrbacia

In this paper is presented a study regarding the possibilities of commandinga virtual robot using a haptic interface. In order to demonstrate the functionality of this concept, a dedicated device with 1 DOF was developed. This device consists of twin motor-gearbox able to acquire and transmit the angular data of the shaft and return a haptic feedback corresponding to the robot movement. The proposed haptic device makes it possible to command one joint of an industrial robot and can be used as an essential component for the development of an exoskeleton for human arm and is able to generate a haptic interaction for all the joints. The exoskeleton solution will allow a structural similarity between the haptic device and an articulated robot arm. The test results with haptic feedback scenarios show that the proposed system can help inexperienced users to handle robot operation and programming tasks in an intuitive way.


This paper focuses on the design, fabrication and control of a 3-DOF robot arm using stepper motors. The robot arm uses three parallelogram mechanisms to position the end-effector of the robot and keep the end-effector always parallel to the horizontal during the robot motion. The robot is designed on the Autodesk Inventor software. Separated parts of the robot are saved in the stereolithography (STL) file format. Then the parts are fabricated by a 3D printer. The movement of the robotic arm is driven by stepper motors and controlled by Arduino. The Arduino board implements kinematics calculation, creates pulses and sends them to three drivers to driven stepper motors. A software is developed to control the robot by sending the command to the Arduino board.


2008 ◽  
Vol 2008 ◽  
pp. 1-11 ◽  
Author(s):  
Ki-Uk Kyung ◽  
Jun-Young Lee ◽  
Junseok Park

This paper presents a haptic stylus interface with a built-in compact tactile display module and an impact module as well as empirical studies on Braille, button, and texture display. We describe preliminary evaluations verifying the tactile display's performance indicating that it can satisfactorily represent Braille numbers for both the normal and the blind. In order to prove haptic feedback capability of the stylus, an experiment providing impact feedback mimicking the click of a button has been conducted. Since the developed device is small enough to be attached to a force feedback device, its applicability to combined force and tactile feedback display in a pen-held haptic device is also investigated. The handle of pen-held haptic interface was replaced by the pen-like interface to add tactile feedback capability to the device. Since the system provides combination of force, tactile and impact feedback, three haptic representation methods for texture display have been compared on surface with 3 texture groups which differ in direction, groove width, and shape. In addition, we evaluate its capacity to support touch screen operations by providing tactile sensations when a user rubs against an image displayed on a monitor.


Author(s):  
Anwer Sabah Ahmed ◽  
Heyam A. Marzog ◽  
Laith Ali Abdul-Rahaim

Every day, the technologies are expanding and developed with extra things to them. A cloud computing (CC) and Internet of things (IoT) became deeply associated with technologies of the internet of future with one supply the other a way helping it for the successful. Arduino microcontroller is used to design robotic arm to pick and place the objects by the web page commands that can be used in many industrials. It can pick and place an object from source to destination and drive the screws in into its position safely. The robot arm is controlled using web page designed by (html) language which contain the dashboard that give the commands to move the servos in the desired angle to get the aimed direction accordingly. At the receiver end there are four servo motors which are made to be interfaced with the micro controller (Arduino) which is connected to the wireless network router. One of these is for the arm horizontally movement and two for arm knee, while the fourth is for catch tings or tight movement. Two ultra-sonic sensors are used for limiting the operation area of the robotic arm. Finally, Proteus program is used for the simulation the controlling of robot before the hardware installation


Actuators ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 299
Author(s):  
Matthias Hofer ◽  
Jasan Zughaibi ◽  
Raffaello D’Andrea

We present an inflatable soft robotic arm made of fabric that leverages state-of-the-art manufacturing techniques, leading to a robust and reliable manipulator. Three bellow-type actuators are used to control two rotational degrees of freedom, as well as the joint stiffness that is coupled to a longitudinal elongation of the movable link used to grasp objects. The design is motivated by a safety analysis based on first principles. It shows that the interaction forces during an unexpected collision are primarily caused by the attached payload mass, but can be reduced by a lightweight design of the robot arm. A control allocation strategy is employed that simplifies the modeling and control of the robot arm and we show that a particular property of the allocation strategy ensures equal usage of the actuators and valves. The modeling and control approach systematically incorporates the effect of changing joint stiffness and the presence of a payload mass. An investigation of the valve flow capacity reveals that a proper timescale separation between the pressure and arm dynamics is only given for sufficient flow capacity. Otherwise, the applied cascaded control approach can introduce oscillatory behavior, degrading the overall control performance. A closed form feed forward strategy is derived that compensates errors induced by the longitudinal elongation of the movable link and allows the realization of different object manipulation applications. In one of the applications, the robot arm hands an object over to a human, emphasizing the safety aspect of the soft robotic system. Thereby, the intrinsic compliance of the robot arm is leveraged to detect the time when the robot should release the object.


2020 ◽  
Vol 4 (4) ◽  
pp. 78
Author(s):  
Andoni Rivera Pinto ◽  
Johan Kildal ◽  
Elena Lazkano

In the context of industrial production, a worker that wants to program a robot using the hand-guidance technique needs that the robot is available to be programmed and not in operation. This means that production with that robot is stopped during that time. A way around this constraint is to perform the same manual guidance steps on a holographic representation of the digital twin of the robot, using augmented reality technologies. However, this presents the limitation of a lack of tangibility of the visual holograms that the user tries to grab. We present an interface in which some of the tangibility is provided through ultrasound-based mid-air haptics actuation. We report a user study that evaluates the impact that the presence of such haptic feedback may have on a pick-and-place task of the wrist of a holographic robot arm which we found to be beneficial.


2021 ◽  
Vol 59 ◽  
pp. 283-298 ◽  
Author(s):  
Claudia González ◽  
J. Ernesto Solanes ◽  
Adolfo Muñoz ◽  
Luis Gracia ◽  
Vicent Girbés-Juan ◽  
...  

2000 ◽  
Author(s):  
Michael L. Turner ◽  
Ryan P. Findley ◽  
Weston B. Griffin ◽  
Mark R. Cutkosky ◽  
Daniel H. Gomez

Abstract This paper describes the development of a system for dexterous telemanipulation and presents the results of tests involving simple manipulation tasks. The user wears an instrumented glove augmented with an arm-grounded haptic feedback apparatus. A linkage attached to the user’s wrist measures gross motions of the arm. The movements of the user are transferred to a two fingered dexterous robot hand mounted on the end of a 4-DOF industrial robot arm. Forces measured at the robot fingers can be transmitted back to the user via the haptic feedback apparatus. The results obtained in block-stacking and object-rolling experiments indicate that the addition of force feedback to the user did not improve the speed of task execution. In fact, in some cases the presence of incomplete force information is detrimental to performance speed compared to no force information. There are indications that the presence of force feedback did aid in task learning.


Author(s):  
Zhaohui Zheng ◽  
Yong Ma ◽  
Hong Zheng ◽  
Yu Gu ◽  
Mingyu Lin

Purpose The welding areas of the workpiece must be consistent with high precision to ensure the welding success during the welding of automobile parts. The purpose of this paper is to design an automatic high-precision locating and grasping system for robotic arm guided by 2D monocular vision to meet the requirements of automatic operation and high-precision welding. Design/methodology/approach A nonlinear multi-parallel surface calibration method based on adaptive k-segment master curve algorithm is proposed, which improves the efficiency of the traditional single camera calibration algorithm and accuracy of calibration. At the same time, the multi-dimension feature of target based on k-mean clustering constraint is proposed to improve the robustness and precision of registration. Findings A method of automatic locating and grasping based on 2D monocular vision is provided for robot arm, which includes camera calibration method and target locating method. Practical implications The system has been integrated into the welding robot of an automobile company in China. Originality/value A method of automatic locating and grasping based on 2D monocular vision is proposed, which makes the robot arm have automatic grasping function, and improves the efficiency and precision of automatic grasp of robot arm.


Sign in / Sign up

Export Citation Format

Share Document