scholarly journals Effect of Gallium Incorporation on the Properties of ZnO Thin Films

Author(s):  
Sema Kurtaran ◽  
Serhat Aldağ ◽  
Göksu Öföfoğlu

Ga doped ZnO thin films were formed by the Ultrasonic Chemical Spray Pyrolysis method onto substrates using zinc acetate and gallium (III) nitrate hydrate as precursors. The structural, optical, surface and electrical properties were studied as a function of increasing Ga doping concentration from 0 to 6 at %. Structural studies were shown polycrystalline with a hexagonal crystal structure. The transparency in the visible range was around 85% for thin film deposited using 6 at % Ga doping. With the aim of determining surface images and surface roughness of the films atomic force microscope images were taken. Ga doping of ZnO thin films could markedly decrease surface roughness. Electrical resistivity was determined by four point method. The resistivity 2.0% Ga doped ZnO film was the lowest resistivity of 1.7 cm. In the photoluminescence measurements of the films, existence of UV and defect emission band was observed. As a result, Ga doped ZnO films have advanced properties and promising materials for solar cells.

Author(s):  
Sema Kurtaran ◽  
Serhat Aldağ ◽  
Göksu Öföfoğlu

Ga doped ZnO thin films were formed by the Ultrasonic Chemical Spray Pyrolysis method onto substrates using zinc acetate and gallium (III) nitrate hydrate as precursors. The structural, optical, surface and electrical properties were studied as a function of increasing Ga doping concentration from 0 to 6 at %. Structural studies were shown polycrystalline with a hexagonal crystal structure. The transparency in the visible range was around 85% for thin film deposited using 6 at % Ga doping. With the aim of determining surface images and surface roughness of the films atomic force microscope images were taken. Ga doping of ZnO thin films could markedly decrease surface roughness. Electrical resistivity was determined by four point method. The resistivity 2.0% Ga doped ZnO film was the lowest resistivity of 1.7 cm. In the photoluminescence measurements of the films, existence of UV and defect emission band was observed. As a result, Ga doped ZnO films have advanced properties and promising materials for solar cells.


2018 ◽  
Vol 6 (2) ◽  
pp. 56
Author(s):  
Mojtaba Mahmoudzadeh Pirvahshi

In this study, transparent conducting Ga-doped ZnO thin films were deposited on glass substrate using chemical spray pyrolysis technique. The effect of Ga-doping concentration (0, 1, 2 and 3 at.%) on microstructural, optical and electrical characteristics of layers have been investigated. The studies of X-ray diffraction and optical transmission spectra show these films have a hexagonal wurtzite structure with (002) preferred growth direction, also a high transmission of 85-95% in visible range. Data analysis show that the band gap energies in these films are varying in the range of 3.27-3.33 eV, consistent with the Burstein-Moss shift effect, with Urbach tail widths between 114-160 meV. The 2 wt% Ga sample showed the maximum figure of merit (3×10-2Ω-1), with an electron concentration and sheet resistance of ~1.42×1019 cm-3 and 13 kΩ/square, respectively.  


2011 ◽  
Vol 324 ◽  
pp. 253-256 ◽  
Author(s):  
A. Douayar ◽  
Raquel Diaz ◽  
P. Prieto ◽  
Mohammed Abd-Lefdil

F-doped ZnO films (FZO) of about 400 nm thicknesses were prepared on glass substrates by the chemical spray pyrolysis technique. X-ray diffraction patterns showed that the undoped and F-doped ZnO films exhibit the hexagonal wurtzite crystal structure with a preferential orientation along [002] direction. No secondary phase is observed in F-doped ZnO films. All films exhibit a transmittance around 80% in the visible range. Photoluminescence spectra at room temperature of undoped and F doped ZnO thin films are presented. The wide PL bands centered at 510 and 680 nm are characteristic of deep levels of oxygen vacancies in the ZnO matrix, and zinc interstitial position. The FZO films are degenerate and exhibit n-type electrical conductivity. The lowest electrical resistivity was 7.6 10−3 Ω cm.


2014 ◽  
Vol 881-883 ◽  
pp. 1117-1121 ◽  
Author(s):  
Xiang Min Zhao

ZnO thin films with different thickness (the sputtering time of AlN buffer layers was 0 min, 30 min,60 min, and 90 min, respectively) were prepared on Si substrates using radio frequency (RF) magnetron sputtering system.X-ray diffraction (XRD), atomic force microscope (AFM), Hall measurements setup (Hall) were used to analyze the structure, morphology and electrical properties of ZnO films.The results show that growth are still preferred (002) orientation of ZnO thin films with different sputtering time of AlN buffer layer,and for the better growth of ZnO films, the optimal sputtering time is 60 min.


2012 ◽  
Vol 560-561 ◽  
pp. 820-824
Author(s):  
Yue Zhi Zhao ◽  
Fei Xiong ◽  
Guo Mian Gao ◽  
Shi Jing Ding

Mn-doped ZnO thin films were prepared on SiO2substrates by using a radio-frequency(rf) magnetron sputtering in order to investigate structure and optical proprieties of the films. X-ray diffraction (XRD), Atomic force microscope (AFM) and UV-VIS spectrophotometry were employed to characterize the Mn-doped ZnO films. The results showed that the shape of the XRD spectrum was remarkably similar to that of the un-doped ZnO film; the film had mainly (002) peak, and indicate that the structure of the films was not disturbed by Mn-doped. The film had rather flat surfaces with the peak-to-tail roughness of about 25nm. Mn-doping changed the band gap of the films, which increased with the increase of the Mn content.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 252 ◽  
Author(s):  
A. M. Alsaad ◽  
A. A. Ahmad ◽  
I. A. Qattan ◽  
Qais M. Al-Bataineh ◽  
Zaid Albataineh

Undoped ZnO and group III (B, Al, Ga, and In)-doped ZnO thin films at 3% doping concentration level are dip-coated on glass substrates using a sol-gel technique. The optical properties of the as-prepared thin films are investigated using UV–Vis spectrophotometer measurements. Transmittance of all investigated thin films is found to attain high values of ≥80% in the visible region. We found that the index of refraction of undoped ZnO films exhibits values ranging between 1.6 and 2.2 and approximately match that of bulk ZnO. Furthermore, we measure and interpret nonlinear optical parameters and the electrical and optical conductivities of the investigated thin films to obtain a deeper insight from fundamental and practical points of view. In addition, the structural properties of all studied thin film samples are investigated using the XRD technique. In particular, undoped ZnO thin film is found to exhibit a hexagonal structure. Due to the large difference in size of boron and indium compared with that of zinc, doping ZnO thin films with these two elements is expected to cause a phase transition. However, Al-doped ZnO and Ga-doped ZnO thin films preserve the hexagonal phase. Moreover, as boron and indium are introduced in ZnO thin films, the grain size increases. On the other hand, grain size is found to decrease upon doping ZnO with aluminum and gallium. The drastic enhancement of optical properties of annealed dip-synthesized undoped ZnO thin films upon doping with group III metals paves the way to tune these properties in a skillful manner, in order to be used as key candidate materials in the fabrication of modern optoelectronic devices.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
William Vallejo ◽  
Alvaro Cantillo ◽  
Carlos Díaz-Uribe

This study synthesized and characterized Ag-doped ZnO thin films. Doped ZnO powders were synthesized using the sol-gel method, and thin films were fabricated using the doctor blade technique. The Ag content was determined by optical emission spectrometers with inductively coupled plasma (ICP plasma). Additionally, X-ray diffraction, Raman spectroscopy, Atomic Force Microscopy (AFM), diffuse reflectance, and X-ray photoelectron spectroscopy (XPS) measurements were used for physicochemical characterization. Finally, the photocatalytic degradation of methylene blue (MB) was studied under visible irradiation in aqueous solution. The Langmuir-Hinshelwood model was used to determine the reaction rate constant of the photocatalytic degradation. The physicochemical characterization showed that the samples were polycrystalline, and the diffraction signals corresponded to the ZnO wurtzite crystalline phase. Raman spectroscopy verified the ZnO doping process. The AFM analysis showed that roughness and grain size were reduced after the doping process. Furthermore, the optical results indicated that the presence of Ag improved the ZnO optical properties in the visible range, and the Ag-doped ZnO thin films had the lowest band gap value (2.95 eV). Finally, the photocatalytic degradation results indicated that the doping process enhanced the photocatalytic activity under visible irradiation, and the Ag-doped ZnO thin films had the highest MB photodegradation value (45.1%), as compared to that of the ZnO thin films (2.7%).


2014 ◽  
Vol 685 ◽  
pp. 3-6
Author(s):  
Ying Lian Wang ◽  
Jun Yao Ye

Pure ZnO thin films and Ag doped ZnO thin films were prepared on quartz substrates by sol-gel process. Structural features and UV absorption spectrum have been studied by XRD and UV-Vis-Nir scanning spectrophotometer. Taking phenol as pollutants, further study of the effect of different annealing temperature and Ag dopant amount of ZnO films on photocatalytic properties was carried out. The results showed that, the optimal annealing temperature on photocatalytic degradation of phenol in this experiment was 300 °C, the best molar ratio of ZnO and Ag was 30:1, which was better than pure ZnO film greatly. Excellent adhesion, recyclable and efficient degradation Ag doped ZnO thin films were found in this experiment.


2015 ◽  
Vol 773-774 ◽  
pp. 739-743
Author(s):  
A.N. Afaah ◽  
N.A.M. Asib ◽  
Aadila Aziz ◽  
Ruziana Mohamed ◽  
Kevin Alvin Eswar ◽  
...  

Mist-atomization deposition method was applied in order to grow ZnO nanoparticles on Au-seeded glass substrates acting as seeded template. Ag doped ZnO thin films were deposited on ZnO seeded templates by solution-immersion method. The influence of Ag doping content on the optical and Raman scattering properties of ZnO films were systematically investigated by UV-Vis transmittance measurement measured by ultra-violet visible spectroscopy (UV-Vis) and Raman scattering spectrum measured by Raman spectroscopy under room temperature. From UV-Vis transmittance measurement, the incorporation of Ag dopant to the ZnO makes the transmittance wavelength shifted to the shorter wavelength as compared to the pure ZnO. From Raman spectra, 4 cm-1 downshift is observed in Ag-doped thin films as compared to pure ZnO thin films. This Raman peak shift shows that a tensile stress existed in the Ag-doped ZnO film.


Sign in / Sign up

Export Citation Format

Share Document