scholarly journals Methylene Blue Photodegradation under Visible Irradiation on Ag-Doped ZnO Thin Films

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
William Vallejo ◽  
Alvaro Cantillo ◽  
Carlos Díaz-Uribe

This study synthesized and characterized Ag-doped ZnO thin films. Doped ZnO powders were synthesized using the sol-gel method, and thin films were fabricated using the doctor blade technique. The Ag content was determined by optical emission spectrometers with inductively coupled plasma (ICP plasma). Additionally, X-ray diffraction, Raman spectroscopy, Atomic Force Microscopy (AFM), diffuse reflectance, and X-ray photoelectron spectroscopy (XPS) measurements were used for physicochemical characterization. Finally, the photocatalytic degradation of methylene blue (MB) was studied under visible irradiation in aqueous solution. The Langmuir-Hinshelwood model was used to determine the reaction rate constant of the photocatalytic degradation. The physicochemical characterization showed that the samples were polycrystalline, and the diffraction signals corresponded to the ZnO wurtzite crystalline phase. Raman spectroscopy verified the ZnO doping process. The AFM analysis showed that roughness and grain size were reduced after the doping process. Furthermore, the optical results indicated that the presence of Ag improved the ZnO optical properties in the visible range, and the Ag-doped ZnO thin films had the lowest band gap value (2.95 eV). Finally, the photocatalytic degradation results indicated that the doping process enhanced the photocatalytic activity under visible irradiation, and the Ag-doped ZnO thin films had the highest MB photodegradation value (45.1%), as compared to that of the ZnO thin films (2.7%).

2019 ◽  
Vol 6 (3) ◽  
pp. 181824 ◽  
Author(s):  
William Vallejo ◽  
Angie Rueda ◽  
Carlos Díaz-Uribe ◽  
Carlos Grande ◽  
Patricia Quintana

This study synthesized and characterized composites of graphene oxide and TiO 2 (GO–TiO 2 ). GO–TiO 2 thin films were deposited using the doctor blade technique. Subsequently, the thin films were sensitized with a natural dye extracted from a Colombian source ( Bactris guineensis ). Thermogravimetric analysis, X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance measurements were used for physico-chemical characterization. All the samples were polycrystalline in nature, and the diffraction signals corresponded to the TiO 2 anatase crystalline phase. Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR) verified the synthesis of composite thin films, and the SEM analysis confirmed the TiO 2 films morphological modification after the process of GO incorporation and sensitization. XPS results suggested a possibility of appearance of titanium (III) through the formation of oxygen vacancies (O v ). Furthermore, the optical results indicated that the presence of the natural sensitizer and GO improved the optical properties of TiO 2 in the visible range. Finally, the photocatalytic degradation of methylene blue was studied under visible irradiation in aqueous solution, and pseudo-first-order model was used to obtain kinetic information about photocatalytic degradation. These results indicated that the presence of GO has an important synergistic effect in conjunction with the natural sensitizer, reaching a photocatalytic yield of 33%.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Carlos Díaz-Uribe ◽  
Jose Viloria ◽  
Lorraine Cervantes ◽  
William Vallejo ◽  
Karen Navarro ◽  
...  

In this work, we synthesized Ag nanoparticles on TiO2 thin films deposited on soda lime glass substrates. Ag nanoparticles were synthesized by photoreduction under UV irradiation silver nitrate solution. X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) measurements were used for physicochemical characterization. The structural study showed that all samples were polycrystalline, main phases were anatase and rutile, and no additional signals were detected after surface modification. Raman spectroscopy suggested that silver aggregates deposited on the TiO2 films could exhibit the surface plasmon resonance (SPR) phenomenon; XPS and SEM analysis confirmed TiO2 film morphological modification after photoreduction process. Photocatalytic degradation of methylene blue (MB) was studied under UV irradiation in aqueous solution, and, besides, pseudo-first-order model was used to obtain kinetic information about photocatalytic degradation. Results indicated that Ag-TiO2 showed an important increase in photocatalytic activity under UV (from 20% to 35%); finally, Ag-TiO2 thin films had kapp value 2.4 × 10−3 ± 0.003 min−1 of 1.8 times greater than the kapp value 1.3 × 10−4 ± 0.0004 min−1 of TiO2 thin films.


Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 528 ◽  
Author(s):  
William Vallejo ◽  
Alvaro Cantillo ◽  
Briggitte Salazar ◽  
Carlos Diaz-Uribe ◽  
Wilkendry Ramos ◽  
...  

We synthesized and characterized both Co-doped ZnO (ZnO:Co) and Cu-doped ZnO (ZnO:Cu) thin films. The catalysts’ synthesis was carried out by the sol–gel method while the doctor blade technique was used for thin film deposition. The physicochemical characterization of the catalysts was carried out by Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction, and diffuse reflectance measurements. The photocatalytic activity was studied under visible irradiation in aqueous solution, and kinetic parameters were determined by pseudo-first-order fitting. The Raman spectra results evinced the doping process and suggested the formation of heterojunctions for both dopants. The structural diffraction patterns indicated that the catalysts were polycrystalline and demonstrated the presence of a ZnO wurtzite crystalline phase. The SEM analysis showed that the morphological properties changed significantly, the micro-aggregates disappeared, and agglomeration was reduced after modification of ZnO. The ZnO optical bandgap (3.22 eV) reduced after the doping process, these being ZnO:Co (2.39 eV) and ZnO:Co (3.01 eV). Finally, the kinetic results of methylene blue photodegradation reached 62.6% for ZnO:Co thin films and 42.5% for ZnO:Cu thin films.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
William Vallejo ◽  
Carlos Díaz-Uribe ◽  
Kathy Rios

In this work, we synthesized In2S3 powder through chemical bath deposition method (CBD) in acid medium; we used thioacetamide as sulphide source and InCl3 as indium ion source. X-ray diffraction, diffuse reflection, and Raman spectroscopy measurements were used for In2S3 powder physicochemical characterization. Optical analysis indicated that In2S3 was active in the visible region of electromagnetic spectrum; it had a band gap of 2.47 eV; the diffraction patterns and Raman spectroscopy suggested that powder had polycrystalline structure. Furthermore, we also studied the adsorption process of methylene blue (MB) on In2S3 powder; adsorption studies indicated that the Langmuir model describes experimental data. Finally, photocatalytic degradation of MB was studied under visible irradiation in aqueous solution; besides, pseudo-first-order model was used to obtain kinetic information about photocatalytic degradation; results indicated that the powder catalyst reduces 26% concentration of MB under visible irradiation.


2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
Mohammad Hossein Habibi ◽  
Mohammad Khaledi Sardashti

Glass plate-supported nanostructure ZnO thin films were deposited by sol-gel spin coating. Films were preheated at275∘Cfor 10 minutes and annealed at 350, 450, and550∘Cfor 80 minutes. The ZnO thin films were transparent ca 80–90% in visible range and revealed that absorption edges at about 370 nm. Thec-axis orientation improves and the grain size increases which was indicated by an increase in intensity of the (002) peak at34.4∘in XRD corresponding to the hexagonal ZnO crystal. The photocatalytic degradation of X6G an anionic monoazo dye, in aqueous solutions, was investigated and the effects of some operational parameters such as the number of layer and reusability of ZnO nanostructure thin film were examined. The results showed that the five-layer coated glass surfaces have a very high photocatalytic performance.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1282 ◽  
Author(s):  
Zhao ◽  
Li ◽  
Ai ◽  
Wen

A kind of devices Pt/Ag/ZnO:Li/Pt/Ti with high resistive switching behaviors were prepared on a SiO2/Si substrate by using magnetron sputtering method and mask technology, composed of a bottom electrode (BE) of Pt/Ti, a resistive switching layer of ZnO:Li thin film and a top electrode (TE) of Pt/Ag. To determine the crystal lattice structure and the Li-doped concentration in the resulted ZnO thin films, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) tests were carried out. Resistive switching behaviors of the devices with different thicknesses of Li-doped ZnO thin films were studied at different set and reset voltages based on analog and digital resistive switching characteristics. At room temperature, the fabricated devices represent stable bipolar resistive switching behaviors with a low set voltage, a high switching current ratio and a long retention up to 104 s. In addition, the device can sustain an excellent endurance more than 103 cycles at an applied pulse voltage. The mechanism on how the thicknesses of the Li-doped ZnO thin films affect the resistive switching behaviors was investigated by installing conduction mechanism models. This study provides a new strategy for fabricating the resistive random access memory (ReRAM) device used in practice.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Kalyani Nadarajah ◽  
Ching Yern Chee ◽  
Chou Yong Tan

Zinc Oxide (ZnO) thin films were deposited on glass substrates via the spray pyrolysis technique. The films were subsequently annealed in ambient air from 300°C to 500°C. The morphology and structural properties of the thin films were studied by field emission scanning electron microscope (FESEM), atomic force microscopy (AFM), and X-ray diffractometry (XRD) techniques. Electrical resistivity of the thin films was measured using a data acquisition unit. The optical properties of the films were characterized by UV-vis spectroscopy and photoluminescence (PL) technique. X-ray diffraction data showed that the films were grown in the (002) direction with a hexagonal wurtzite structure. The average grain size ranged from 15 to 27 nm. Increasing annealing temperatures resulted in larger grain sizes and higher crystallinity, with the surface roughness of annealed films being more than twice if compared to unannealed film. The electrical resistivity of the films decreased with the increasing annealing temperature. The UV and visible band emissions were observed in the photoluminescence spectra, due to exciton and defect-related emissions, respectively. The transmission values of the films were as high as 90% within the visible range (400–700 nm).


2011 ◽  
Vol 1 ◽  
pp. 135-139 ◽  
Author(s):  
M. Asghar ◽  
Khalid Mahmood ◽  
Adnan Ali ◽  
M.A. Hasan ◽  
I. Hussain ◽  
...  

Origin of ultraviolet (UV) luminescence from bulk ZnO has been investigated with the help of photoluminescence (PL) measurements. Thin films of ZnO having 52%, 53% and 54% of Zn-contents were prepared by means of molecular beam epitaxy (MBE). We observed a dominant UV line at 3.28 eV and a visible line centered at 2.5 eV in the PL spectrum performed at room temperature. The intensity of UV line has been found to depend upon the Zn percentage in the ZnO layers. Thereby, we correlate the UV line in our samples with the Zn-interstitials-bound exciton (Zni-X) recombination. The results obtained from, x-ray diffraction, the energy dispersive X-ray spectrum (EDAX) and Raman spectroscopy supported the PL results.


Sign in / Sign up

Export Citation Format

Share Document