Effects of the Sputtering Time of AlN Buffer Layer on the Quality of ZnO Thin Films

2014 ◽  
Vol 881-883 ◽  
pp. 1117-1121 ◽  
Author(s):  
Xiang Min Zhao

ZnO thin films with different thickness (the sputtering time of AlN buffer layers was 0 min, 30 min,60 min, and 90 min, respectively) were prepared on Si substrates using radio frequency (RF) magnetron sputtering system.X-ray diffraction (XRD), atomic force microscope (AFM), Hall measurements setup (Hall) were used to analyze the structure, morphology and electrical properties of ZnO films.The results show that growth are still preferred (002) orientation of ZnO thin films with different sputtering time of AlN buffer layer,and for the better growth of ZnO films, the optimal sputtering time is 60 min.

2013 ◽  
Vol 774-776 ◽  
pp. 954-959
Author(s):  
Xiao Jing Wang

The electrical properties need to be improved, although Aluminum doped ZnO thin films (ZnO: Al) have been successfully deposited on transparent TPT substrates by our group. In this paper, ZnO: Al film was deposited on TPT substrate with SiO2 buffer layer by RF magnetron sputtering. The obtained film had a hexagonal structure and highly (002) preferred orientation. Compared with ZAO film without buffer layer, the lattice constant distortion of the film with buffer layer was decreased and the compressive stress was decreased by 9.2%, reaching to 0.779GPa. The carrier concentration and hall mobility of the film with buffer layer were both increased; especially the carrier concentration was enhanced by two orders of magnitude, reaching to 2.65×10+20/cm3. The resistivity of ZAO film with SiO2 buffer layer was about 7.6×10-3 Ω·cm and the average transmittance was over 70% in the range of 450~900nm.


2016 ◽  
Vol 23 (03) ◽  
pp. 1650016
Author(s):  
WEI QIANG LIM ◽  
SUBRAMANI SHANMUGAN ◽  
MUTHARASU DEVARAJAN

Aluminum oxide (Al2O3) thin films with Al2O3 buffer layer were deposited on Si (100) and Si (111) substrates using RF magnetron sputtering of Al2O3 target in Ar atmosphere. The synthesized films were then annealed at the temperature of 400[Formula: see text]C, 600[Formula: see text]C and 800[Formula: see text]C in nitrogen (N2) environment for 6[Formula: see text]h. Structural properties and surface morphology are examined by using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Atomic Force Microscope (AFM). XRD analysis indicated that different orientation of Al2O3 were formed with different intensities due to increase in the annealing temperature. From FESEM cross-section analysis results, it is observed that the thickness of films were increased as the annealing temperature increased. EDX analysis shows that the concentration of aluminum and oxygen on both the Si substrates increased with the increase in annealing temperature. The surface roughness of the films were found to be decreased first when the annealing temperature is increased to 400[Formula: see text]C, yet the roughness increased when the annealing temperature is further increased to 800[Formula: see text]C.


2007 ◽  
Vol 336-338 ◽  
pp. 567-570
Author(s):  
Chong Mu Lee ◽  
Anna Park ◽  
Young Joon Cho ◽  
Hyoun Woo Kim ◽  
Jae Gab Lee

It is very desirable to grow ZnO epitaxial films on Si substrates since Si wafers with a high quality is available and their prices are quite low. Nevertheless, it is not easy to grow ZnO films epitaxially on Si substrates directly because of formation of an amorphous SiO2 layer at the interface of ZnO and Si. A Zn film and an undoped ZnO film were deposited sequentially on an (100) Si substrate by rf magnetron sputtering. The sample was annealed at 700°C in a nitrogen atmosphere. X-ray diffraction (XRD), photoluminescence (PL) and atomic force microscopy (AFM) analyses were performed to investigate the cristallinity and surface morphology of the ZnO film. According to the analysis results the crystallinity of a ZnO thin film deposited by rf magnetron sputtering is substantially improved by using a Zn buffer layer. The highest ZnO film quality is obtained with a 110nm thick Zn buffer layer. The surface roughness of the ZnO thin film increases as the Zn buffer layer thickness increases.


2012 ◽  
Vol 560-561 ◽  
pp. 820-824
Author(s):  
Yue Zhi Zhao ◽  
Fei Xiong ◽  
Guo Mian Gao ◽  
Shi Jing Ding

Mn-doped ZnO thin films were prepared on SiO2substrates by using a radio-frequency(rf) magnetron sputtering in order to investigate structure and optical proprieties of the films. X-ray diffraction (XRD), Atomic force microscope (AFM) and UV-VIS spectrophotometry were employed to characterize the Mn-doped ZnO films. The results showed that the shape of the XRD spectrum was remarkably similar to that of the un-doped ZnO film; the film had mainly (002) peak, and indicate that the structure of the films was not disturbed by Mn-doped. The film had rather flat surfaces with the peak-to-tail roughness of about 25nm. Mn-doping changed the band gap of the films, which increased with the increase of the Mn content.


2013 ◽  
Vol 669 ◽  
pp. 181-184
Author(s):  
Nan Ding ◽  
Li Ming Xu ◽  
Bao Jia Wu ◽  
Guang Rui Gu

Zinc oxide (ZnO) films were prepared on Si substrates and then aluminum nitride (AlN) films were deposited on ZnO films by radio frequency (RF) magnetron sputtering. The crystal orientation, crystallite structure and surface morphology of AlN/ZnO films were characterized by X-ray diffraction (XRD), Raman spectrum and scanning electron microscopy (SEM). It was indicated that the AlN films were closely deposited on the ZnO film and had good crystallinity. Moreover, about 1μm-sized crystal particles with high c-axial orientation distributed uniformly on the AlN/ZnO film surface. It was indicated that ZnO could be a promising candidate as buffer layer for preparation of AlN thin films.


2012 ◽  
Vol 545 ◽  
pp. 290-293
Author(s):  
Maryam Amirhoseiny ◽  
Hassan Zainuriah ◽  
Ng Shashiong ◽  
Mohd Anas Ahmad

We have studied the effects of deposition conditions on the crystal structure of InN films deposited on Si substrate. InN thin films have been deposited on Si(100) substrates by reactive radio frequency (RF) magnetron sputtering method with pure In target at room temperature. The nitrogen gas pressure, applied RF power and the distance between target and substrate were 2×10-2 Torr, 60 W and 8 cm, respectively. The effects of the Ar–N2 sputtering gas mixture on the structural properties of the films were investigated by using scanning electron microscope, energy-dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction techniques.


2012 ◽  
Vol 626 ◽  
pp. 168-172
Author(s):  
Samsiah Ahmad ◽  
Nor Diyana Md Sin ◽  
M.N. Berhan ◽  
Mohamad Rusop

Zinc Oxide (ZnO) thin films were deposited onto SiO2/Si substrates using radio frequency (RF) magnetron sputtering method as an Ammonia (NH3) sensor. The dependence of RF power (50~300 Watt) on the structural properties and sensitivity of NH3sensor were investigated. XRD analysis shows that regardless of the RF power, all samples display the preferred orientation on the (002) plane. The results show that the ZnO deposited at 200 Watt display the highest sensitivity value which is 44%.


Author(s):  
Sema Kurtaran ◽  
Serhat Aldağ ◽  
Göksu Öföfoğlu

Ga doped ZnO thin films were formed by the Ultrasonic Chemical Spray Pyrolysis method onto substrates using zinc acetate and gallium (III) nitrate hydrate as precursors. The structural, optical, surface and electrical properties were studied as a function of increasing Ga doping concentration from 0 to 6 at %. Structural studies were shown polycrystalline with a hexagonal crystal structure. The transparency in the visible range was around 85% for thin film deposited using 6 at % Ga doping. With the aim of determining surface images and surface roughness of the films atomic force microscope images were taken. Ga doping of ZnO thin films could markedly decrease surface roughness. Electrical resistivity was determined by four point method. The resistivity 2.0% Ga doped ZnO film was the lowest resistivity of 1.7 cm. In the photoluminescence measurements of the films, existence of UV and defect emission band was observed. As a result, Ga doped ZnO films have advanced properties and promising materials for solar cells.


2021 ◽  
Author(s):  
srinivasa varaprsad H ◽  
sridevi P. V ◽  
Satya Anuradha M ◽  
Srinivas Pattipaka ◽  
pamu D

Abstract Perovskites are important composites in the area of multidisciplinary applications. It is achieved by carefully choosing and tuning the properties of the thin-film at the deposition. In this paper, ZnTiO3 (ZTO) thin-films were being deposited on quartz and N-Si substrates by RF magnetron sputtering. The thin-films were developed at room temperature, oxygen percentage levels varying from 0 to 100, and annealed at 600oC. The electrical, optical, morphological, and structural properties were analyzed as a function of oxygen mixing percentage (OMP). The crystallinity of the cubic structured ZTO thin-film is found to be high at 25 OMP, and it is gradually decreased with increased OMP. The surface morphology of the thin-film is observed, and roughness is measured from the atomic force microscope. Raman Spectroscopy investigated the phase formation and the vibrational modes of the thin-film with their spectral de-convolution. The ZTO thin-films optical properties were investigated using transmittance spectra. The ZTO thin-film indicated the highest refractive index of 2.46, at 633nm with optical bandgap values of 3.57 eV, with a thickness of 145nm and 25 OMP. The refractive index, thin-film thickness, and excitation coefficient were analyzed using the Swanepoel envelope technique. Electrical characteristics of ZTO thin-film are measured from the optimized conditions of the thin-film with conventional thermionic emission (TE) technique.


2007 ◽  
Vol 124-126 ◽  
pp. 93-96
Author(s):  
N.K. Park ◽  
H.S. Lee ◽  
Y.S. No ◽  
Tae Whan Kim ◽  
Jeong Yong Lee ◽  
...  

The X-ray diffraction (XRD) pattern for the ZnO films grown on Si (100) substrates indicates that the grown ZnO films have a strong c-axis orientation. The pole figure indicates that ZnO thin films have columnars with the grains of the [0002] crystallographic axis perpendicular to the Si (100) substrate, indicative of the random rotational orientations along the c-axis. Selected area electron diffraction pattern (SADP) of the ZnO/Si (100) heterostructures shows that the ZnO preferential oriented film is formed on the Si substrate. A possible atomic arrangement of the crystal structure and the formation mechanism of the c-axis orientated ZnO thin films grown on p-Si substrates are discussed on the basis of the XRD, the pole figure, and SADP results.


Sign in / Sign up

Export Citation Format

Share Document