scholarly journals A New Approach for Planning M.C.W.H. Systems with Annual Rainfall-Runoff Data

Author(s):  
Spyros Giakoumakis ◽  
Alexis Skalieris

In the present study a new approach for planning Micro-Catchment Water Harvesting (M.C.W.H.) systems for irrigation in semi-arid regions such as the Aegean islands, is presented. This is a cheap solution for constructing infrastructure with zero energy cost in regions where water is scarce. The proposed approach introduces simple linear relationships for estimating the annual volume of water Vs collected mainly from the CA (Contributing Area), stored in the root zone (Infiltration Basin, IB), according to the annual  rainfall and runoff depths, after having determined the ratio of areas of micro-catchment components, i.e., λ = ΑCA/ΑΙΒ and its whole area AMC This procedure was applied in Paros island of the Cyclades complex in the middle of the Aegean sea in east Mediterranean. Besides, income-cost analysis was performed via NPV method for almonds, peach and apricot trees.

Author(s):  
Spyros Giakoumakis ◽  
Alexis Skalieris

In this study a new approach for planning Micro-Catchment Water Harvesting (M.C.W.H.) systems for irrigation in semi-arid regions such as the Aegean islands, is presented. M.C.W.H. is a cheap solution for constructing infrastructure with zero energy cost in regions where water is scarce. The proposed approach introduces simple linear relationships for estimating the annual volume of water Vs collected mainly from the CA (Contributing Area), stored in the root zone (Infiltration Basin, IB), according to the annual  rainfall and runoff depths, after having determined the ratio of areas of micro-catchment components i.e., λ = ΑCA/ΑΙΒ and its whole area AMC This procedure was applied in Paros island of the Cyclades complex in the middle of the Aegean sea in east Mediterranean. Besides, income-cost analysis was performed via NPV method for almonds, peach and apricot trees.


Author(s):  
Spyros Giakoumakis ◽  
Alexis Skalieris

In this study a new approach for planning Micro-Catchment Water Harvesting (M.C.W.H.) systems for irrigation in semi-arid regions such as the Aegean islands, is presented. M.C.W.H. is a cheap solution for constructing irrigation infrastructure with zero energy cost in regions where water is scarce. The proposed approach introduces simple linear relationships for estimating the annual volume of water Vs collected mainly from the CA (Contributing Area), stored in the root zone (Infiltration Basin, IB), according to the annual rainfall and runoff depths, after having determined the ratio of areas of micro-catchment (MC) components i.e. λ= ΑCA/ΑΙΒ and its whole area AMC This procedure was applied in Paros island of the Cyclades complex in the middle of the Aegean sea in east Mediterranean. Besides, income-cost analysis was performed via NPV method for almond, peach and apricot trees. The new approach was proved versatile and easy to use. Besides, the investment turned out to be advantageous two years after the MCs construction.


Author(s):  
Saad M. AlAyyash ◽  

In arid lands, rainwater harvesting can play an important role in making more water available since most of the rainfall runoff evaporates. If rainwater can be collected, it will form a useful resource. Jordan is classified as one of the poorest countries regarding water resources with an arid and semi-arid climate. For these limited and vital sources of water, good estimation of rainfall runoff quantity and quality can enhance the sustainability of water harvesting projects. The hydrologic estimations of runoff quantities and qualities are essential, and several techniques to achieve that exist. Revised Universal Soil Loss Equation (RUSLE) is one of the widely used techniques to assess the soil erosion due to runoff, by assessing other physical factors that affect the soil loss. RUSLE combined five parameters to identify the soil loss rate: rainfall erosivity, topographic, soil erodibility, vegetation cover and management, and land management. Based on RUSLE results, areas are classified as a highly soil loss rate if the annual rates exceeded 20 tons per hectare. The Asreh watershed is a 196 km2 area that is mostly wasted land and receives an annual rainfall between 50 and 300 mm per year. The RUSLE equation inputs parameters for the study area are found and the equation is applied for the watershed. Results of RUSLE application on the Asreh watershed showed that the average annual soil loss rate is about 7.8 tons per hectare, about 73% of the area are classified as low soil loss rate with less than 10 tons per hectare per year, and only 13% of the area is classified as a high soil loss rate of more than 20 tons per hectare per year.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Ola Al-Qawasmi

AbstractRainwater harvesting is adopted to face water scarcity in arid regions. Many studies were developed in Jordan to estimate the potential of water harvesting for several uses. However, the precise estimation of water saving and cost benefits for the potential of rainwater harvesting from the roofs of residential urban areas is insufficient. Therefore, the objective of this study was to investigate the feasibility of rainwater harvesting from residential rooftops in all the eighty-nine Jordanian districts. The forecast number of buildings was calculated from 2016 to 2025 using building growth rate, where the number of houses and villas was adopted only. The long-term rainfall average from 1937 to 2017 was used. Two scenarios were used to assess the potential of rainwater harvesting; numerical (as scenario 1) and tabulated by plumbing code (as scenario 2) for the years from 2019 to 2025. Also, the growth rate of one cubic meter of water cost was calculated to find the money saving potential for the water companies in Jordan. The results indicated that the water harvesting potential was different between two scenarios in the districts which have annual rainfall more than 100 mm was efficient in scenario 1 compared to scenario 2 with the projected financial return which was increased from $5.4 million at 2019 to reach $33.4 million at 2025, while in the districts which have annual rainfall less than 100 mm was more efficient in scenario 2 compared to scenario 1 with the projected financial return which was increased from $2.4 million at 2019 to reach $14.6 million at 2025.


2011 ◽  
Vol 8 (5) ◽  
pp. 8865-8901
Author(s):  
P. Noel ◽  
A. N. Rousseau ◽  
C. Paniconi

Abstract. Subdivision of catchment into appropriate hydrological units is essential to represent rainfall-runoff processes in hydrological modelling. The commonest units used for this purpose are hillslopes (e.g. Fan and Bras, 1998; Troch et al., 2003). Hillslope width functions can therefore be utilised as one-dimensional representation of three-dimensional landscapes by introducing profile curvatures and plan shapes. An algorithm was developed to delineate and extract hillslopes and hillslope width functions by introducing a new approach to calculate an average profile curvature and plan shape. This allows the algorithm to be independent of digital elevation model resolution and to associate hillslopes to nine elementary landscapes according to Dikau (1989). This algortihm was tested on two flat and steep catchments of the province of Quebec, Canada. Results showed great area coverage for hillslope width function over individual hillslopes and entire watershed.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 713
Author(s):  
Edward G. Barrett-Lennard ◽  
Rushna Munir ◽  
Dana Mulvany ◽  
Laine Williamson ◽  
Glen Riethmuller ◽  
...  

This paper focuses on the adverse effects of soil sodicity and alkalinity on the growth of barley (Hordeum vulgare L.) in a rainfed environment in south-western Australia. These conditions cause the accumulation of salt (called ‘transient salinity’) in the root zone, which decreases the solute potential of the soil solution, particularly at the end of the growing season as the soil dries. We hypothesized that two approaches could help overcome this stress: (a) improved micro-water harvesting at the soil surface, which would help maintain soil hydration, decreasing the salinity of the soil solution, and (b) soil amelioration using small amounts of gypsum, elemental sulfur or gypsum plus elemental sulfur, which would ensure greater salt leaching. In our experiments, improved micro-water harvesting was achieved using a tillage technique consisting of exaggerated mounds between furrows and the covering of these mounds with plastic sheeting. The combination of the mounds and the application of a low rate of gypsum in the furrow (50 kg ha−1) increased yields of barley grain by 70% in 2019 and by 57% in 2020, relative to a control treatment with conventional tillage, no plastic sheeting and no amendment. These increases in yield were related to changes in ion concentrations in the soil and to changes in apparent electrical conductivity measured with the EM38.


2004 ◽  
Vol 8 (5) ◽  
pp. 903-922 ◽  
Author(s):  
M. Bari ◽  
K. R. J. Smettem

Abstract. A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall–runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, "Ernies" (control, fully forested) and "Lemon" (54% cleared) are in a zone of mean annual rainfall of 725 mm, while "Salmon" (control, fully forested) and "Wights" (100% cleared) are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall–runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i) immediately after clearing due to reduced evapotranspiration, and (ii) through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i) an upper zone unsaturated store, (ii) a transient stream zone store, (ii) a lower zone unsaturated store and (iv) a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and predicted monthly hydrographs. The observed and predicted monthly runoff for all catchments matched well with coefficients of determination (R2) ranging from 0.68 to 0.87. Predictions were relatively poor for: (i) the Ernies catchment (lowest rainfall, forested), and (ii) months with very high flows. Overall, the predicted mean annual streamflow was within ±8% of the observed values. Keywords: monthly streamflow, land use change, conceptual model, data-based approach, groundwater


2006 ◽  
Vol 10 (2) ◽  
pp. 233-243 ◽  
Author(s):  
E. Gaume

Abstract. This paper presents some analytical results and numerical illustrations on the asymptotic properties of flood peak distributions obtained through derived flood frequency approaches. It confirms and extends the results of previous works: i.e. the shape of the flood peak distributions are asymptotically controlled by the rainfall statistical properties, given limited and reasonable assumptions concerning the rainfall-runoff process. This result is partial so far: the impact of the rainfall spatial heterogeneity has not been studied for instance. From a practical point of view, it provides a general framework for analysis of the outcomes of previous works based on derived flood frequency approaches and leads to some proposals for the estimation of very large return-period flood quantiles. This paper, focussed on asymptotic distribution properties, does not propose any new approach for the extrapolation of flood frequency distribution to estimate intermediate return period flood quantiles. Nevertheless, the large distance between frequent flood peak values and the asymptotic values as well as the simulations conducted in this paper help quantifying the ill condition of the problem of flood frequency distribution extrapolation: it illustrates how large the range of possibilities for the shapes of flood peak distributions is.


2007 ◽  
Vol 4 (1) ◽  
pp. 287-326 ◽  
Author(s):  
R. J. Abrahart ◽  
L. M. See

Abstract. The potential of an artificial neural network to perform simple non-linear hydrological transformations is examined. Four neural network models were developed to emulate different facets of a recognised non-linear hydrological transformation equation that possessed a small number of variables and contained no temporal component. The modeling process was based on a set of uniform random distributions. The cloning operation facilitated a direct comparison with the exact equation-based relationship. It also provided broader information about the power of a neural network to emulate existing equations and model non-linear relationships. Several comparisons with least squares multiple linear regression were performed. The first experiment involved a direct emulation of the Xinanjiang Rainfall-Runoff Model. The next two experiments were designed to assess the competencies of two neural solutions that were developed on a reduced number of inputs. This involved the omission and conflation of previous inputs. The final experiment used derived variables to model intrinsic but otherwise concealed internal relationships that are of hydrological interest. Two recent studies have suggested that neural solutions offer no worthwhile improvements in comparison to traditional weighted linear transfer functions for capturing the non-linear nature of hydrological relationships. Yet such fundamental properties are intrinsic aspects of catchment processes that cannot be excluded or ignored. The results from the four experiments that are reported in this paper are used to challenge the interpretations from these two earlier studies and thus further the debate with regards to the appropriateness of neural networks for hydrological modelling.


Sign in / Sign up

Export Citation Format

Share Document