scholarly journals Notes on $q$-Hermite Based Unified Apostol Type Polynomials

Author(s):  
Waseem Khan

In this article, a new class of $q$-Hermite based unified Apostol type polynomials is introduced by means of generating function and series representation. Several important formulas and recurrence relations for these polynomials are derived via different generating methods. We also introduce $q$-analog of Stirling numbers of second kind of order $\nu$ by which we construct a relation including aforementioned polynomials.

Author(s):  
Waseem Khan ◽  
Idrees Ahmad Khan ◽  
Mehmet Acikgoz ◽  
Ugur Duran

In this paper, a new class of q-Hermite based Frobenius type Eulerian polynomials is introduced by means of generating function and series representation. Several fundamental formulas and recurrence relations for these polynomials are derived via different generating methods. Furthermore, diverse correlations including the q-Apostol-Bernoulli polynomials, the q-Apostol-Euler poynoomials, the q-Apostol-Genocchi polynomials and the q-Stirling numbers of the second kind are also established by means of the their generating functions.


Author(s):  
Yilmaz Simsek

By using the calculus of finite differences methods and the umbral calculus, we construct recurrence relations for a new class of special numbers. Using this recurrence relation, we define generating functions for this class of special numbers and also new classes of special polynomials. We investigate some properties of these generating functions. By using these generating functions with their functional equations, we obtain many new and interesting identities and relations related to these classes of special numbers and polynomials, the Bernoulli numbers and polynomials, the Euler numbers and polynomials, the Stirling numbers. Finally, some derivative formulas and integral formulas for these classes of special numbers and polynomials are given. In general, this article includes results that have the potential to be used in areas such as discrete mathematics, combinatorics analysis and their applications.


Author(s):  
Waseem Khan

Motivation by the definition of the type 2 poly-Bernoulli polynomials introduced by Kim-Kim [9], in the present paper, we consider a new class of new generating function for the Fubini polynomials, called the type 2 poly-Fubini polynomials by means of the polyexponential function. Then, we derive some useful relations and properties. We show that the type 2 poly-Fubini polynomials equal a linear combination of the classical of the Fubini polynomials and Stirling numbers of the first kind. In a special case, we give a relation between the type 2 poly-Fubini polynomials and Bernoulli polynomials of order r. Moreover, inspired by the definition of the unipoly-Bernoulli polynomials introduced by Kim-Kim [9]. We introduce the type 2 unipoly-Fubini polynomials by means of unipoly function and give multifarious properties including derivative and integral properties. Furthermore, we provide a correlation between the unipoly-Fubini polynomials and the classical Fubini polynomials.


Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 309-320 ◽  
Author(s):  
B.S. El-Desouky ◽  
Nenad Cakic ◽  
F.A. Shiha

In this paper we give a new family of numbers, called ??-Whitney numbers, which gives generalization of many types of Whitney numbers and Stirling numbers. Some basic properties of these numbers such as recurrence relations, explicit formulas and generating functions are given. Finally many interesting special cases are derived.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 648
Author(s):  
Ghulam Muhiuddin ◽  
Waseem Ahmad Khan ◽  
Ugur Duran ◽  
Deena Al-Kadi

The purpose of this paper is to construct a unified generating function involving the families of the higher-order hypergeometric Bernoulli polynomials and Lagrange–Hermite polynomials. Using the generating function and their functional equations, we investigate some properties of these polynomials. Moreover, we derive several connected formulas and relations including the Miller–Lee polynomials, the Laguerre polynomials, and the Lagrange Hermite–Miller–Lee polynomials.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Sunil Kumar Sharma ◽  
Waseem A. Khan ◽  
Serkan Araci ◽  
Sameh S. Ahmed

Abstract Recently, Kim and Kim (Russ. J. Math. Phys. 27(2):227–235, 2020) have studied new type degenerate Bernoulli numbers and polynomials by making use of degenerate logarithm. Motivated by (Kim and Kim in Russ. J. Math. Phys. 27(2):227–235, 2020), we consider a special class of polynomials, which we call a new type of degenerate Daehee numbers and polynomials of the second kind. By using their generating function, we derive some new relations including the degenerate Stirling numbers of the first and second kinds. Moreover, we introduce a new type of higher-order degenerate Daehee polynomials of the second kind. We also derive some new identities and properties of this type of polynomials.


2018 ◽  
Vol 99 (03) ◽  
pp. 353-361
Author(s):  
MEGHA GOYAL

We give the generating function of split$(n+t)$-colour partitions and obtain an analogue of Euler’s identity for split$n$-colour partitions. We derive a combinatorial relation between the number of restricted split$n$-colour partitions and the function$\unicode[STIX]{x1D70E}_{k}(\unicode[STIX]{x1D707})=\sum _{d|\unicode[STIX]{x1D707}}d^{k}$. We introduce a new class of split perfect partitions with$d(a)$copies of each part$a$and extend the work of Agarwal and Subbarao [‘Some properties of perfect partitions’,Indian J. Pure Appl. Math 22(9) (1991), 737–743].


2018 ◽  
Vol 68 (4) ◽  
pp. 727-740 ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck

Abstract In this paper, we consider a polynomial generalization, denoted by $\begin{array}{} u_m^{a,b} \end{array}$ (n, k), of the restricted Stirling numbers of the first and second kind, which reduces to these numbers when a = 1 and b = 0 or when a = 0 and b = 1, respectively. If a = b = 1, then $\begin{array}{} u_m^{a,b} \end{array}$ (n, k) gives the cardinality of the set of Lah distributions on n distinct objects in which no block has cardinality exceeding m with k blocks altogether. We derive several combinatorial properties satisfied by $\begin{array}{} u_m^{a,b} \end{array}$ (n, k) and some additional properties in the case when a = b = 1. Our results not only generalize previous formulas found for the restricted Stirling numbers of both kinds but also yield apparently new formulas for these numbers in several cases. Finally, an exponential generating function formula is derived for $\begin{array}{} u_m^{a,b} \end{array}$ (n, k) as well as for the associated Cauchy numbers.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Aimin Xu

We employ the generalized factorials to define a Stirling-type pair{s(n,k;α,β,r),S(n,k;α,β,r)}which unifies various Stirling-type numbers investigated by previous authors. We make use of the Newton interpolation and divided differences to obtain some basic properties of the generalized Stirling numbers including the recurrence relation, explicit expression, and generating function. The generalizations of the well-known Dobinski's formula are further investigated.


1998 ◽  
Vol 21 (3) ◽  
pp. 463-466
Author(s):  
M. Aslam Chaudhry ◽  
Munir Ahmad

A series representation of the Macdonald function is obtained using the properties of a probability density function and its moment generating function. Some applications of the result are discussed and an open problem is posed.


Sign in / Sign up

Export Citation Format

Share Document