scholarly journals Network of Interactions between ZIKA Virus Non-structural Proteins and Human Host Proteins

Author(s):  
Volha A. Golubeva ◽  
Thales C. Nepomuceno ◽  
Giuliana de Gregoriis ◽  
Rafael D. Mesquita ◽  
Xueli Li ◽  
...  

The Zika virus (ZIKV) is a mosquito-borne Flavivirus and can be transmitted through an infected mosquito bite or through human-to-human interaction by sexual activity, blood transfusion, breastfeeding or perinatal exposure. After the 2015-2016 outbreak in Brazil, a strong link between ZIKV infection and microcephaly emerged. ZIKV specifically targets human neural progenitor cells, suggesting that proteins encoded by ZIKV bind and inactivate host cell proteins leading to microcephaly. Here, we present a systematic annotation of interactions between human proteins and the seven non-structural ZIKV proteins corresponding to a Brazilian isolate. The interaction network was generated by combining tandem-affinity purification followed by mass spectrometry with yeast two-hybrid screens. We identified 150 human proteins, involved in distinct biological processes, as interactors to ZIKV non-structural proteins. Our interacting network is composed of proteins that have been previously associated with microcephaly in human genetic disorders and/or animal models. This study builds on previously published interacting networks of ZIKV and genes related to autosomal recessive primary microcephaly to generate a catalog of human cellular targets of ZIKV proteins implicated in processes related to microcephaly in humans. Collectively, this data can be used as a resource for future characterization of ZIKV infection biology and help create a basis for the discovery of drugs which may disrupt the interaction and reduce the health damage to the fetus.

Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 153 ◽  
Author(s):  
Volha A. Golubeva ◽  
Thales C. Nepomuceno ◽  
Giuliana de Gregoriis ◽  
Rafael D. Mesquita ◽  
Xueli Li ◽  
...  

The Zika virus (ZIKV) is a mosquito-borne Flavivirus and can be transmitted through an infected mosquito bite or through human-to-human interaction by sexual activity, blood transfusion, breastfeeding, or perinatal exposure. After the 2015–2016 outbreak in Brazil, a strong link between ZIKV infection and microcephaly emerged. ZIKV specifically targets human neural progenitor cells, suggesting that proteins encoded by ZIKV bind and inactivate host cell proteins, leading to microcephaly. Here, we present a systematic annotation of interactions between human proteins and the seven non-structural ZIKV proteins corresponding to a Brazilian isolate. The interaction network was generated by combining tandem-affinity purification followed by mass spectrometry with yeast two-hybrid screens. We identified 150 human proteins, involved in distinct biological processes, as interactors to ZIKV non-structural proteins. Our interacting network is composed of proteins that have been previously associated with microcephaly in human genetic disorders and/or animal models. Further, we show that the protein inhibitor of activated STAT1 (PIAS1) interacts with NS5 and modulates its stability. This study builds on previously published interacting networks of ZIKV and genes related to autosomal recessive primary microcephaly to generate a catalog of human cellular targets of ZIKV proteins implicated in processes related to microcephaly in humans. Collectively, these data can be used as a resource for future characterization of ZIKV infection biology and help create a basis for the discovery of drugs that may disrupt the interaction and reduce the health damage to the fetus.


2020 ◽  
pp. JVI.02024-20
Author(s):  
Alex E Clark ◽  
Zhe Zhu ◽  
Florian Krach ◽  
Jeremy N Rich ◽  
Gene W. Yeo ◽  
...  

Zika virus (ZIKV) is a mosquito-borne human pathogen that causes congenital Zika syndrome and neurological symptoms in some adults. There are currently no approved treatments or vaccines for ZIKV, and exploration of therapies targeting host processes could avoid viral development of drug resistance. The purpose of our study was to determine if the non-toxic and widely used disaccharide trehalose, which showed antiviral activity against Human Cytomegalovirus (HCMV) in our previous work, could restrict ZIKV infection in clinically relevant neural progenitor cells (NPCs). Trehalose is known to induce autophagy, the degradation and recycling of cellular components. Whether autophagy is proviral or antiviral for ZIKV is controversial and depends on cell type and specific conditions used to activate or inhibit autophagy. We show here that trehalose treatment of NPCs infected with recent ZIKV isolates from Panama and Puerto Rico significantly reduces viral replication and spread. In addition, we demonstrate that ZIKV infection in NPCs spreads primarily cell-to-cell as an expanding infectious center, and NPCs are infected via contact with infected cells far more efficiently than by cell-free virus. Importantly, ZIKV was able to spread in NPCs in the presence of neutralizing antibody.Importance Zika virus causes birth defects and can lead to neurological disease in adults. While infection rates are currently low, ZIKV remains a public health concern with no treatment or vaccine available. Targeting a cellular pathway to inhibit viral replication is a potential treatment strategy that avoids development of antiviral resistance. We demonstrate in this study that the non-toxic autophagy-inducing disaccharide trehalose reduces spread and output of ZIKV in infected neural progenitor cells (NPCs), the major cells infected in the fetus. We show that ZIKV spreads cell-to-cell in NPCs as an infectious center and that NPCs are more permissive to infection by contact with infected cells than by cell-free virus. We find that neutralizing antibody does not prevent the spread of the infection in NPCs. These results are significant in demonstrating anti-ZIKV activity of trehalose and in clarifying the primary means of Zika virus spread in clinically relevant target cells.


2021 ◽  
Author(s):  
Malgorzata Rychlowska ◽  
Abigail Agyapong ◽  
Michael Weinfeld ◽  
Luis M Schang

Vertical transmission of Zika virus (ZIKV) leads with high frequency to congenital ZIKV syndrome (CZS), whose worse outcome is microcephaly. However, the mechanisms of congenital ZIKV neurodevelopmental pathologies, including direct cytotoxicity to neural progenitor cells (NPC), placental insufficiency, and immune responses, remain incompletely understood. At the cellular level, microcephaly typically results from death or insufficient proliferation of NPC or cortical neurons. NPCs replicate fast, requiring efficient DNA damage responses to ensure genome stability. Like congenital ZIKV infection, mutations in the polynucleotide 5’-kinase 3’-phosphatase (PNKP) gene, which encodes a critical DNA damage repair enzyme, results in recessive syndromes often characterized by congenital microcephaly with seizures (MCSZ). We thus tested whether there were any links between ZIKV and PNKP. Here we show that a PNKP phosphatase inhibitor inhibits ZIKV replication. PNKP relocalized from the nucleus to the cytoplasm in infected cells, co-localizing with the marker of ZIKV replication factories (RF) NS1 and resulting in functional nuclear PNKP depletion. Although infected NPC accumulated DNA damage, they failed to activate the DNA damage checkpoint kinases Chk1 and Chk2. ZIKV also induced activation of cytoplasmic CycA/CDK1 complexes, which trigger unscheduled mitotic entry. Inhibition of CDK1 activity inhibited ZIKV replication and the formation of RF, supporting a role of cytoplasmic CycA/CDK1 in RF morphogenesis. In brief, ZIKV infection induces mitotic catastrophe resulting from unscheduled mitotic entry in the presence of DNA damage. PNKP and CycA/CDK1 are thus host factors participating in ZIKV replication in NPC, and probably pathogenesis.


Author(s):  
Juan-Carlos Saiz ◽  
Nereida Jiménez de Oya ◽  
Ana-Belén Blázquez ◽  
Estela Escribano-Romero ◽  
Miguel A. Martín-Acebes

Zika virus (ZIKV), a mosquito-borne flavivirus, was an almost neglected pathogen until its introduction in the Americas in 2015, where it has been responsible for a threat to global health, causing a great social and sanitary alarm due to its increased virulence, rapid spread, and an association with severe neurological and ophthalmological complications. Currently, no specific antiviral therapy against ZIKV is available, and treatments are palliative and mainly directed to symptoms relief, such as fever and rash, by administering antipyretics, anti-histamines, and fluids for dehydration. Nevertheless, lately, a great effort has been made to search for antiviral candidates using different approaches and methodologies, ranging from repurposing of specific compounds with known antiviral activity to the screening of libraries and of natural compounds. The identified antiviral candidates include drugs targeting viral components (structural proteins and enzymes), as well as cellular ones. Here, we present an updated review of current knowledge about anti-ZIKV strategies, focusing on host-directed antivirals as a realistic alternative to combat ZIKV infection.


2019 ◽  
Vol 93 (20) ◽  
Author(s):  
Christy Hammack ◽  
Sarah C. Ogden ◽  
Joseph C. Madden ◽  
Angelica Medina ◽  
Chongchong Xu ◽  
...  

ABSTRACT Zika virus (ZIKV) infection attenuates the growth of human neural progenitor cells (hNPCs). As these hNPCs generate the cortical neurons during early brain development, the ZIKV-mediated growth retardation potentially contributes to the neurodevelopmental defects of the congenital Zika syndrome. Here, we investigate the mechanism by which ZIKV manipulates the cell cycle in hNPCs and the functional consequence of cell cycle perturbation on the replication of ZIKV and related flaviviruses. We demonstrate that ZIKV, but not dengue virus (DENV), induces DNA double-strand breaks (DSBs), triggering the DNA damage response through the ATM/Chk2 signaling pathway while suppressing the ATR/Chk1 signaling pathway. Furthermore, ZIKV infection impedes the progression of cells through S phase, thereby preventing the completion of host DNA replication. Recapitulation of the S-phase arrest state with inhibitors led to an increase in ZIKV replication, but not of West Nile virus or DENV. Our data identify ZIKV’s ability to induce DSBs and suppress host DNA replication, which results in a cellular environment favorable for its replication. IMPORTANCE Clinically, Zika virus (ZIKV) infection can lead to developmental defects in the cortex of the fetal brain. How ZIKV triggers this event in developing neural cells is not well understood at a molecular level and likely requires many contributing factors. ZIKV efficiently infects human neural progenitor cells (hNPCs) and leads to growth arrest of these cells, which are critical for brain development. Here, we demonstrate that infection with ZIKV, but not dengue virus, disrupts the cell cycle of hNPCs by halting DNA replication during S phase and inducing DNA damage. We further show that ZIKV infection activates the ATM/Chk2 checkpoint but prevents the activation of another checkpoint, the ATR/Chk1 pathway. These results unravel an intriguing mechanism by which an RNA virus interrupts host DNA replication. Finally, by mimicking virus-induced S-phase arrest, we show that ZIKV manipulates the cell cycle to benefit viral replication.


2020 ◽  
Author(s):  
Hans C. Leier ◽  
Jules B. Weinstein ◽  
Jennifer E. Kyle ◽  
Joon-Yong Lee ◽  
Lisa M. Bramer ◽  
...  

AbstractZika virus (ZIKV), an arbovirus of global concern, remodels intracellular membranes to form replication sites. How ZIKV dysregulates lipid networks to allow this, and consequences for disease, is poorly understood. Here, we performed comprehensive lipidomics to create a lipid network map during ZIKV infection. We found that ZIKV significantly alters host lipid composition, with the most striking changes seen within subclasses of sphingolipids. Ectopic expression of ZIKV NS4B protein resulted in similar changes, demonstrating a role for NS4B in modulating sphingolipid pathways. Disruption of sphingolipid biosynthesis in various cell types, including human neural progenitor cells, blocked ZIKV infection. Additionally, the sphingolipid ceramide redistributes to ZIKV replication sites and increasing ceramide levels by multiple pathways sensitizes cells to ZIKV infection. Thus, we identify a sphingolipid metabolic network with a critical role in ZIKV replication and show that ceramide flux is a key mediator of ZIKV infection.


Viruses ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 453 ◽  
Author(s):  
Juan-Carlos Saiz ◽  
Nereida Oya ◽  
Ana-Belén Blázquez ◽  
Estela Escribano-Romero ◽  
Miguel Martín-Acebes

Zika virus (ZIKV), a mosquito-borne flavivirus, was an almost neglected pathogen until its introduction in the Americas in 2015, where it has been responsible for a threat to global health, causing a great social and sanitary alarm due to its increased virulence, rapid spread, and an association with severe neurological and ophthalmological complications. Currently, no specific antiviral therapy against ZIKV is available, and treatments are palliative and mainly directed toward the relief of symptoms, such as fever and rash, by administering antipyretics, anti-histamines, and fluids for dehydration. Nevertheless, lately, search for antivirals has been a major aim in ZIKV investigations. To do so, screening of libraries from different sources, testing of natural compounds, and repurposing of drugs with known antiviral activity have allowed the identification of several antiviral candidates directed to both viral (structural proteins and enzymes) and cellular elements. Here, we present an updated review of current knowledge about anti-ZIKV strategies, focusing on host-directed antivirals as a realistic alternative to combat ZIKV infection.


2020 ◽  
Vol 12 (547) ◽  
pp. eaaw9066
Author(s):  
Sonia Maciejewski ◽  
Tracy J. Ruckwardt ◽  
Kaitlyn M. Morabito ◽  
Bryant M. Foreman ◽  
Katherine E. Burgomaster ◽  
...  

The emergence of Zika virus (ZIKV) in the Americas stimulated the development of multiple ZIKV vaccine candidates. We previously developed two related DNA vaccine candidates encoding ZIKV structural proteins that were immunogenic in animal models and humans. We sought to identify neutralizing antibody (NAb) properties induced by each vaccine that correlated with protection in nonhuman primates (NHPs). Despite eliciting equivalent NAb titers in NHPs, these vaccines were not equally protective. The transfer of equivalent titers of vaccine-elicited NAb into AG129 mice also revealed nonequivalent protection, indicating qualitative differences among antibodies (Abs) elicited by these vaccines. Both vaccines elicited Abs with similar binding titers against envelope protein monomers and those incorporated into virus-like particles, as well as a comparable capacity to orchestrate phagocytosis. Functional analysis of vaccine-elicited NAbs from NHPs and humans revealed a capacity to neutralize the structurally mature form of the ZIKV virion that varied in magnitude among vaccine candidates. Conversely, sensitivity to the virion maturation state was not a characteristic of NAbs induced by natural or experimental infection. Passive transfer experiments in mice revealed that neutralization of mature ZIKV virions more accurately predicts protection from ZIKV infection. These findings demonstrate that NAb correlates of protection may differ among vaccine antigens when assayed using standard neutralization platforms and suggest that measurements of Ab quality, including the capacity to neutralize mature virions, will be critical for defining correlates of ZIKV vaccine-induced immunity.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 123 ◽  
Author(s):  
Pedro Pablo Martínez-Rojas ◽  
Elizabeth Quiroz-García ◽  
Verónica Monroy-Martínez ◽  
Lourdes Teresa Agredano-Moreno ◽  
Luis Felipe Jiménez-García ◽  
...  

To date, no safe vaccine or antivirals for Zika virus (ZIKV) infection have been found. The pathogenesis of severe Zika, where host and viral factors participate, remains unclear. For the control of Zika, it is important to understand how ZIKV interacts with different host cells. Knowledge of the targeted cellular pathways which allow ZIKV to productively replicate and/or establish prolonged viral persistence contributes to novel vaccines and therapies. Monocytes and endothelial vascular cells are the main ZIKV targets. During the infection process, cells are capable of releasing extracellular vesicles (EVs). EVs are mediators of intercellular communication. We found that mosquito EVs released from ZIKV-infected (C6/36) cells carry viral RNA and ZIKV-E protein and are able to infect and activate naïve mosquito and mammalian cells. ZIKV C6/36 EVs promote the differentiation of naïve monocytes and induce a pro-inflammatory state with tumor necrosis factor-alpha (TNF-α) mRNA expression. ZIKV C6/36 EVs participate in endothelial vascular cell damage by inducing coagulation (TF) and inflammation (PAR-1) receptors at the endothelial surface of the cell membranes and promote a pro-inflammatory state with increased endothelial permeability. These data suggest that ZIKV C6/36 EVs may contribute to the pathogenesis of ZIKV infection in human hosts.


2021 ◽  
Vol 10 (Supplement_2) ◽  
pp. S11-S12
Author(s):  
K E Ocwieja ◽  
T K Hughes ◽  
C C M Baker ◽  
A C Stanton ◽  
J M Antonucci ◽  
...  

Abstract Background The molecular mechanisms underpinning the neurologic and congenital pathologies caused by Zika virus (ZIKV) infection remain poorly understood. It is also unclear why congenital ZIKV disease was not reported prior to the recent epidemics in French Polynesia and the Americas, despite evidence that Zika virus has actively circulated in parts of Africa and Asia since 1947 and 1966, respectively. Methods Due to advances in the stem cell-based technologies, we can now model ZIKV infections of the central nervous system in human stem cell-derived neural progenitor cells and cerebral organoids, which recapitulate complex 3-dimensional neural architecture. We apply Seq-Well — a simple, portable platform for massively parallel single-cell RNA sequencing — to characterize these neural models infected with ZIKV. We detect and quantify host mRNA transcripts and viral RNA with single-cell resolution, thereby defining transcriptional features of both uninfected and infected cells. Results Although flavivirus RNAs lack a poly(A) tail, we present evidence that viral RNAs are specifically primed for reverse transcription at internal runs of adenosines, and that sequencing reads cover the entire non-polyadenylated viral genome. In neural progenitor cells, single cell sequencing reveals that while uninfected bystander cells strongly upregulate interferon pathway genes, these pathways are largely suppressed in cells infected with ZIKV within the same culture dish. Single cell sequencing identifies multiple cell types in our cerebral organoids including neural progenitor cells, intermediate progenitor cells, and neurons of varied maturity. Using this model, we find that neurons, not typically considered targets of ZIKV in the developing brain, contain high copy numbers of ZIKV genomes. It remains uncertain whether neurons are directly infected, or if infected neural progenitor cells differentiate into neurons, carrying virus with them. Notably, the neuronal bystander cell population shows limited interferon gene pathway upregulation compared to neural progenitors. Conclusions Overall, our work provides insight into the pathogenesis of ZIKV associated microcephaly, identifies potential new tropisms of ZIKV in the human brain, and suggests that both virus replication and host response mechanisms underlie the neuropathology of ZIKV infection.


Sign in / Sign up

Export Citation Format

Share Document