scholarly journals Development and Evaluation of a Reynolds-Averaged Navier-Stokes Solver in WindNinja for Operational Wildland Fire Applications

Author(s):  
Natalie S. Wagenbrenner ◽  
Jason M. Forthofer ◽  
Wesley G. Page ◽  
Bret W. Butler

An open source computational fluid dynamics (CFD) solver has been incorporated into the WindNinja modeling framework widely used by wildland fire managers as well as researchers and practitioners in other fields, such as wind energy, wind erosion, and search and rescue. Here we describe incorporation of the CFD solver and evaluate its performance compared to the conservation of mass (COM) solver in WindNinja and previously published large-eddy simulations (LES) for three field campaigns conducted over isolated terrain obstacles of varying terrain complexity: Askervein Hill, Bolund Hill, and Big Southern Butte. We also compare the effects of two important model settings in the CFD solver and provide guidance on model sensitivity to these settings. Additionally, we investigate the computational mesh and difficulties regarding terrain representation. Two important findings from this work are: (1) the choice of discretization scheme for advection has a significantly larger effect on the simulated winds than the choice of turbulence model and (2) CFD solver predictions are significantly better than the COM solver predictions at windward and lee side observation locations, but no difference was found in predicted speed-up at ridgetop locations between the two solvers.

Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 672
Author(s):  
Wagenbrenner ◽  
Forthofer ◽  
Page ◽  
Butler

An open source computational fluid dynamics (CFD) solver has been incorporated into the WindNinja modeling framework. WindNinja is widely used by wildland fire managers, as well as researchers and practitioners in other fields, such as wind energy, wind erosion, and search and rescue. Here, we describe the CFD solver and evaluate its performance against the WindNinja conservation of mass (COM) solver, and previously published large-eddy simulations (LES), for three field campaigns with varying terrain complexity: Askervein Hill, Bolund Hill, and Big Southern Butte. We also compare the effects of two model settings in the CFD solver, namely the discretization scheme used for the advection term of the momentum equation and the turbulence model, and provide guidance on model sensitivity to these settings. Additionally, we investigate the computational mesh and difficulties regarding terrain representation. Two important findings from this work are: (1) CFD solver predictions are significantly better than COM solver predictions at windward and lee side observation locations, but no difference was found in predicted speed-up at ridgetop locations between the two solvers, and (2) the choice of discretization scheme for advection has a significantly larger effect on the simulated winds than the choice of turbulence model.


Author(s):  
D Borello ◽  
G Delibra ◽  
K Hanjalić ◽  
F Rispoli

This paper reports on the application of unsteady Reynolds averaged Navier—Stokes (U-RANS) and hybrid large-eddy simulation (LES)/Reynolds averaged Navier—Stokes (RANS) methods to predict flows in compressor cascades using an affordable computational mesh. Both approaches use the ζ— f elliptic relaxation eddy-viscosity model, which for U-RANS prevails throughout the flow, whereas for the hybrid the U-RANS is active only in the near-wall region, coupled with the dynamic LES in the rest of the flow. In this ‘seamless’ coupling the dissipation rate in the k-equation is multiplied by a grid-detection function in terms of the ratio of the RANS and LES length scales. The potential of both approaches was tested in several benchmark flows showing satisfactory agreement with the available experimental results. The flow pattern through the tip clearance in a low-speed linear cascade shows close similarity with experimental evidence, indicating that both approaches can reproduce qualitatively the tip leakage and tip separation vortices with a relatively coarse computational mesh. The hybrid method, however, showed to be superior in capturing the evolution of vortical structures and related unsteadiness in the hub and wake regions.


2001 ◽  
Vol 105 (1050) ◽  
pp. 419-426 ◽  
Author(s):  
G. Barakos ◽  
M. Vahdati ◽  
A.I. Sayma ◽  
C. Bréard ◽  
M. Imregun

Abstract This paper presents the development and validation of a parallel unsteady flow and aeroelasticity code for large-scale numerical models used in turbo machinery applications. The work is based on an existing unstructured Navier-Stokes solver developed over the past ten years by the Aeroelasticity Research Group at Imperial College Vibration University Technology Centre. The single-process multiple-data paradigm was adopted for the parallelisation of the solver and several validation cases were considered. The computational mesh was divided into several sub-sections using a domain decomposition technique. The performance and numerical accuracy of the parallel solver was validated across several computer platforms for various problem sizes. In cases where the solution could be obtained on a single CPU, the serial and parallel versions of the code were found to produce identical results. Studies on up to 32 CPUs showed varying levels of parallelisation efficiency, an almost linear speed-up being obtained in some cases. Finally, an industrial configuration, a 17 blade row turbine with a 47 million point mesh, was discussed to illustrate the potential of the proposed large-scale modelling methodology.


2017 ◽  
Vol 14 (03) ◽  
pp. 1750021 ◽  
Author(s):  
A. Niktash ◽  
B. P. Huynh

A windcatcher is a structure for providing natural ventilation using wind power; it is usually fitted on the roof of a building to exhaust the inside stale air to the outside and supplies the outside fresh air into the building interior space working by pressure difference between outside and inside of the building. In this paper, the behavior of free wind flow through a three-dimensional room fitted with a centered position two-canal bottom shape windcatcher model is investigated numerically, using a commercial computational fluid dynamics (CFD) software package and LES (Large Eddy Simulation) CFD method. The results have been compared with the obtained results for the same model but using RANS (Reynolds Averaged Navier–Stokes) CFD method. The model with its surrounded space has been considered in both method. It is found that the achieved results for the model from LES method are in good agreement with RANS method’s results for the same model.


2021 ◽  
Vol 9 (12) ◽  
pp. 1411
Author(s):  
Yihan Xing ◽  
Marek Jan Janocha ◽  
Guang Yin ◽  
Muk Chen Ong

The Subsea Shuttle Tanker (SST) was proposed by Equinor as an alternative to subsea pipelines and surface tankers for the transportation of liquid carbon dioxide (CO2) from existing offshore/land facilities to marginal subsea fields. In contrast to highly weather-dependent surface tanker operations, the SST can operate in any condition underwater. Low resistance is paramount to achieving maximum range. In this paper, the resistance of the SST at an operating forward speed of 6 knots (3.09 m/s) and subject to an incoming current velocity of 1 m/s is computed using Computational Fluid Dynamics (CFD). The Delayed Detached Eddy Simulation (DDES) method is used. This method combines features of Reynolds-Averaged Navier–Stokes Simulation (RANS) in the attached boundary layer parts at the near-wall regions, and Large Eddy Simulation (LES) at the unsteady, separated regions near to the propeller. The force required to overcome forward resistance is calculated to be 222 kN and agrees well with experimental measurements available in the open literature. The corresponding power consumption is calculated to be 927 kW, highlighting the high efficiency of the SST. The method presented in this paper is general and can be used for resistance optimization studies of any underwater vessel.


2014 ◽  
Vol 617 ◽  
pp. 291-295
Author(s):  
Robert Šoltýs ◽  
Michal Tomko

For estimation of aerodynamic characteristics of cable-stayed footbridge deck a computational fluid dynamics (CFD) has been used. An incompressible fluid flow with Navier-Stokes equations has been applied. An adequate numerical model has been created to obtain accurate values of aerodynamic characteristics. Preliminary determination of simulation parameters have been estimated using laminar fluid flow model. Subsequently, Smagorinsky large-eddy simulation (LES) turbulent model has been applied with different simulation parameters to obtain converged values. The boundary layer separation regions and downwind vortex shedding has been observed.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
P. G. Tucker ◽  
Z. N. Wang

Abstract The successful application of eddy resolving simulations to most areas of a modern gas turbine aeroengine is considered. A coherent modeling framework is presented to address coupling challenges. A flow classification is also given. The extensive results presented are shown to be promising but many challenges remain. In the short term, the use of eddy resolving simulations should see greater use in Reynolds-averaged Navier–Stokes (RANS) and lower-order model calibration/development—this is starting to happen already. Ideally, in the near future, RANS, large eddy simulation (LES), and test should work in harmony. It is advocated that currently, certain costly engineering design problems can be avoided or understood using scale resolving simulations.


2014 ◽  
Author(s):  
Νεκτάριος Κουτσουράκης

Στην παρούσα διατριβή έγινε ανάπτυξη υπολογιστικής μεθοδολογίας μοντελοποίησης μεγάλων δινών και χρήση της σε προβλήματα μελέτης της ροής του ανέμου και της διασποράς αέριων ρύπων ανάμεσα σε κτίρια. Η μοντελοποίηση μεγάλων δινών (Large Eddy Simulation – LES) είναι μια μεθοδολογία υπολογιστικής ρευστομηχανικής (Computational Fluid Dynamics – CFD) με την οποία είναι δυνατή η λεπτομερής χρονική επίλυση της ροής και η ανάλυση των μεγάλων δινών της τύρβης. Έτσι η LES ενδείκνυται ιδιαίτερα για μελέτη των ασταθών τυρβωδών ροϊκών φαινομένων που συμβαίνουν σε αστικές γεωμετρίες. Η μεθοδολογία LES που αναπτύχθηκε ενσωματώθηκε σε προϋπάρχοντα κώδικα CFD, τον ADREA-HF. Η αναπτυχθείσα LES χρησιμοποιεί μεταξύ των άλλων και μια πρωτότυπη μέθοδο δημιουργίας τεχνητής ψευδοτύρβης για χρήση σε οριακές συνθήκες του υπολογιστικού χωρίου, η οποία βασίζεται σε μια γενικευμένη εξίσωση τύπου Langevin. Για πιστοποίηση του κώδικα έγιναν μοντελοποιήσεις πλήρως ανεπτυγμένης ροής σε κανάλι, αλλά και ροής και διασποράς ρύπων σε οδικές χαράδρες. Επίσης εξετάστηκαν και πιο σύνθετες περιπτώσεις, όπως έκλυση και διασπορά υδρογόνου σε κλειστούς χώρους, ροή και διασπορά ρύπων σε ασύμμετρες οδικές χαράδρες, ροή πάνω από πολύ μεγάλη τραχύτητα εδάφους και τέλος ροή και διασπορά ρύπων σε μια πρωτότυπη γεωμετρία ημι-εξιδανικευμένης πόλης. Στις εφαρμογές που μελετήθηκαν έγινε επιτυχής σύγκριση με πειραματικά δεδομένα, οπότε η μεθοδολογία που αναπτύχθηκε αποδείχθηκε αξιόπιστη. Εκτός από την LES, χρησιμοποιήθηκε και η απλούστερη μεθοδολογία RANS (Reynolds-Averaged Navier-Stokes), προσδιορίστηκε ο σχετικός ρόλος των δύο μεθοδολογιών και αναδείχθηκαν οι δυνατότητες συμπληρωματικής χρήσης τους στο ίδιο πρόβλημα. Σε κάθε πρακτική εφαρμογή που εξετάστηκε, μελετήθηκαν κυρίως θέματα στα οποία υπήρχε κενό στη βιβλιογραφία. Μεταξύ άλλων προσδιορίστηκαν οι μηχανισμοί απαγωγής των ρύπων σε ασύμμετρες οδικές χαράδρες και υπολογίστηκε για πρώτη φορά ο κρίσιμος λόγος υψών για δημιουργία δύο στροβίλων σε χαράδρες μείωσης αναβαθμού. Επίσης μελετήθηκαν λεπτομερώς ασταθή ροϊκά φαινόμενα και τυρβώδεις δομές στην ημι-εξιδανικευμένη πόλη, αποκαλύπτοντας φαινόμενα όπως ριπές ανέμου, εξωθήσεις ρύπου, μη-γκαουσιανές κατανομές ταχυτήτων, αλλά και μηχανισμούς δημιουργίας κάποιων συνεκτικών δομών της τύρβης (ιδίως πεταλοειδών στροβίλων). Με τη μεθοδολογία LES, ανοίγονται νέοι ορίζοντες στη μελέτη της τυρβώδους ροής και της διασποράς ρύπων στο αστικό περιβάλλον.


Author(s):  
V. A. SABELNIKOV ◽  
◽  
V. V. VLASENKO ◽  
S. BAKHNE ◽  
S. S. MOLEV ◽  
...  

Gasdynamics of detonation waves was widely studied within last hundred years - analytically, experimentally, and numerically. The majority of classical studies of the XX century were concentrated on inviscid aspects of detonation structure and propagation. There was a widespread opinion that detonation is such a fast phenomenon that viscous e¨ects should have insigni¦cant in§uence on its propagation. When the era of calculations based on the Reynolds-averaged Navier- Stokes (RANS) and large eddy simulation approaches came into effect, researchers pounced on practical problems with complex geometry and with the interaction of many physical effects. There is only a limited number of works studying the in§uence of viscosity on detonation propagation in supersonic §ows in ducts (i. e., in the presence of boundary layers).


Sign in / Sign up

Export Citation Format

Share Document