scholarly journals Genetic features of Multi Drug Resistant (MDR) Klebsiella pneumoniae and its Plasmids

Author(s):  
Begoña Fuster ◽  
Nuria Tormo ◽  
Carme Salvador ◽  
Neris García ◽  
Fernando González-Candelas ◽  
...  

Klebsiella pneumoniae, a major cause of both hospital and community-acquired infections, is listed by the World Health Organization as a critical priority antibiotic- resistant bacterial pathogen. With the appearance of sequencing techniques such as Next-generation Sequencing (NGS), there is the possibility to obtain the whole genome of the bacteria, getting to know all antimicrobial resistance determinants. The purpose of this study has been to apply this new technology to clinical microbiology, in order to characterize the resistome present in carbapenem-resistant K.pneumoniae strains isolated in a tertiary hospital in Valencia, Spain. A total of 234 isolates were prepared for whole-genome sequencing with Ilumina MiSeq, and sequences were later studied for antimicrobial resistance genes, sequence-typing and plasmids. Sequence-typing showed four major circulating clones in our hospital settings: ST11, ST307, ST101 and ST147, carrying different plasmids and different resistance determinants such as OXA-48 and NDM-1 carbapenemase. Application of new technologies such as whole-genome sequencing in clinical microbiology gives advantages when it comes to rapid therapy adjustment, consequently improving the patient’s clinical outcomes.

2020 ◽  
Vol 11 ◽  
Author(s):  
Grazielle Lima Rodrigues ◽  
Pedro Panzenhagen ◽  
Rafaela Gomes Ferrari ◽  
Anamaria dos Santos ◽  
Vania Margaret Flosi Paschoalin ◽  
...  

2019 ◽  
Author(s):  
Ronan M. Doyle ◽  
Denise M. O’Sullivan ◽  
Sean D. Aller ◽  
Sebastian Bruchmann ◽  
Taane Clark ◽  
...  

AbstractBackgroundAntimicrobial resistance (AMR) poses a threat to public health. Clinical microbiology laboratories typically rely on culturing bacteria for antimicrobial susceptibility testing (AST). As the implementation costs and technical barriers fall, whole-genome sequencing (WGS) has emerged as a ‘one-stop’ test for epidemiological and predictive AST results. Few published comparisons exist for the myriad analytical pipelines used for predicting AMR. To address this, we performed an inter-laboratory study providing sets of participating researchers with identical short-read WGS data sequenced from clinical isolates, allowing us to assess the reproducibility of the bioinformatic prediction of AMR between participants and identify problem cases and factors that lead to discordant results.MethodsWe produced ten WGS datasets of varying quality from cultured carbapenem-resistant organisms obtained from clinical samples sequenced on either an Illumina NextSeq or HiSeq instrument. Nine participating teams (‘participants’) were provided these sequence data without any other contextual information. Each participant used their own pipeline to determine the species, the presence of resistance-associated genes, and to predict susceptibility or resistance to amikacin, gentamicin, ciprofloxacin and cefotaxime.ResultsIndividual participants predicted different numbers of AMR-associated genes and different gene variants from the same clinical samples. The quality of the sequence data, choice of bioinformatic pipeline and interpretation of the results all contributed to discordance between participants. Although much of the inaccurate gene variant annotation did not affect genotypic resistance predictions, we observed low specificity when compared to phenotypic AST results but this improved in samples with higher read depths. Had the results been used to predict AST and guide treatment a different antibiotic would have been recommended for each isolate by at least one participant.ConclusionsWe found that participants produced discordant predictions from identical WGS data. These challenges, at the final analytical stage of using WGS to predict AMR, suggest the need for refinements when using this technology in clinical settings. Comprehensive public resistance sequence databases and standardisation in the comparisons between genotype and resistance phenotypes will be fundamental before AST prediction using WGS can be successfully implemented in standard clinical microbiology laboratories.


2020 ◽  
Vol 6 (7) ◽  
Author(s):  
Bede Constantinides ◽  
Kevin K. Chau ◽  
T. Phuong Quan ◽  
Gillian Rodger ◽  
Monique I. Andersson ◽  
...  

Escherichia coli and Klebsiella spp. are important human pathogens that cause a wide spectrum of clinical disease. In healthcare settings, sinks and other wastewater sites have been shown to be reservoirs of antimicrobial-resistant E. coli and Klebsiella spp., particularly in the context of outbreaks of resistant strains amongst patients. Without focusing exclusively on resistance markers or a clinical outbreak, we demonstrate that many hospital sink drains are abundantly and persistently colonized with diverse populations of E. coli , Klebsiella pneumoniae and Klebsiella oxytoca , including both antimicrobial-resistant and susceptible strains. Using whole-genome sequencing of 439 isolates, we show that environmental bacterial populations are largely structured by ward and sink, with only a handful of lineages, such as E. coli ST635, being widely distributed, suggesting different prevailing ecologies, which may vary as a result of different inputs and selection pressures. Whole-genome sequencing of 46 contemporaneous patient isolates identified one (2 %; 95 % CI 0.05–11 %) E. coli urine infection-associated isolate with high similarity to a prior sink isolate, suggesting that sinks may contribute to up to 10 % of infections caused by these organisms in patients on the ward over the same timeframe. Using metagenomics from 20 sink-timepoints, we show that sinks also harbour many clinically relevant antimicrobial resistance genes including bla CTX-M, bla SHV and mcr, and may act as niches for the exchange and amplification of these genes. Our study reinforces the potential role of sinks in contributing to Enterobacterales infection and antimicrobial resistance in hospital patients, something that could be amenable to intervention. This article contains data hosted by Microreact.


mSphere ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
S. Wesley Long ◽  
Sarah E. Linson ◽  
Matthew Ojeda Saavedra ◽  
Concepcion Cantu ◽  
James J. Davis ◽  
...  

ABSTRACTKlebsiella pneumoniaeis a major threat to public health, causing significant morbidity and mortality worldwide. The emergence of highly drug-resistant strains is particularly concerning. There has been a recognition and division ofKlebsiella pneumoniaeinto three distinct phylogenetic groups:Klebsiella pneumoniae,Klebsiella variicola, andKlebsiella quasipneumoniae.K. variicolaandK. quasipneumoniaehave often been described as opportunistic pathogens that have less virulence in humans thanK. pneumoniaedoes. We recently sequenced the genomes of 1,777 extended-spectrum-beta-lactamase (ESBL)-producingK. pneumoniaeisolates recovered from human infections and discovered that 28 strains were phylogenetically related toK.variicolaandK. quasipneumoniae. Whole-genome sequencing of 95 additional non-ESBL-producingK. pneumoniaeisolates recovered from patients found 12K. quasipneumoniaestrains. Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) analysis initially identified all patient isolates asK. pneumoniae, suggesting a potential pitfall in conventional clinical microbiology laboratory identification methods. Whole-genome sequence analysis revealed extensive sharing of core gene content and plasmid replicons among theKlebsiellaspecies. For the first time, strains of bothK. variicolaandK. quasipneumoniaewere found to carry theKlebsiella pneumoniaecarbapenemase (KPC) gene, while anotherK. variicolastrain was found to carry the New Delhi metallo-beta-lactamase 1 (NDM-1) gene.K. variicolaandK. quasipneumoniaeinfections were not less virulent thanK. pneumoniaeinfections, as assessed by in-hospital mortality and infection type. We also discovered evidence of homologous recombination in oneK. variicolastrain, as well as one strain from a novelKlebsiellaspecies, which challenge the current understanding of interrelationships between clades ofKlebsiella.IMPORTANCEKlebsiella pneumoniaeis a serious human pathogen associated with resistance to multiple antibiotics and high mortality.K. variicolaandK. quasipneumoniaeare closely related organisms that are generally considered to be less-virulent opportunistic pathogens. We used a large, comprehensive, population-based strain collection and whole-genome sequencing to investigate infections caused by these organisms in our hospital system. We discovered thatK. variicolaandK. quasipneumoniaeisolates are often misidentified asK. pneumoniaeby routine clinical microbiology diagnostics and frequently cause severe life-threatening infections similar toK. pneumoniae. The presence of KPC inK. variicolaandK. quasipneumoniaestrains as well as NDM-1 metallo-beta-lactamase in oneK. variicolastrain is particularly concerning because these genes confer resistance to many different beta-lactam antibiotics. The sharing of plasmids, as well as evidence of homologous recombination, between these three species ofKlebsiellais cause for additional concern.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1131
Author(s):  
Noel Gahamanyi ◽  
Dae-Geun Song ◽  
Kye-Yoon Yoon ◽  
Leonard E. G. Mboera ◽  
Mecky I. Matee ◽  
...  

Thermophilic Campylobacter species of poultry origin have been associated with up to 80% of human campylobacteriosis cases. Layer chickens have received less attention as possible reservoirs of Campylobacter species. Initially, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of two archived Campylobacter isolates (Campylobacter jejuni strain 200605 and Campylobacter coli strain 200606) from layer chickens to five antimicrobials (ciprofloxacin, nalidixic acid, erythromycin, tetracycline, and gentamicin) were determined using broth microdilution while the presence of selected antimicrobial resistance genes was performed by polymerase chain reaction (PCR) using specific primers. Whole-genome sequencing (WGS) was performed by the Illumina HiSeq X platform. The analysis involved antimicrobial resistance genes, virulome, multilocus sequence typing (MLST), and phylogeny. Both isolates were phenotypically resistant to ciprofloxacin (MIC: 32 vs. 32 µg/mL), nalidixic acid (MIC: 128 vs. 64 µg/mL), and tetracycline (MIC: 64 vs. 64 µg/mL), but sensitive to erythromycin (MIC: 1 vs. 2 µg/mL) and gentamicin (MIC: 0.25 vs. 1 µg/mL) for C. jejuni strain 200605 and C. coli strain 200606, respectively. WGS confirmed C257T mutation in the gyrA gene and the presence of cmeABC complex conferring resistance to FQs in both strains. Both strains also exhibited tet(O) genes associated with tetracycline resistance. Various virulence genes associated with motility, chemotaxis, and capsule formation were found in both isolates. However, the analysis of virulence genes showed that C. jejuni strain 200605 is more virulent than C. coli strain 200606. The MLST showed that C. jejuni strain 200605 belongs to sequence type ST-5229 while C. coli strain 200606 belongs to ST-5935, and both STs are less common. The phylogenetic analysis clustered C. jejuni strain 200605 along with other strains reported in Korea (CP028933 from chicken and CP014344 from human) while C. coli strain 200606 formed a separate cluster with C. coli (CP007181) from turkey. The WGS confirmed FQ-resistance in both strains and showed potential virulence of both strains. Further studies are recommended to understand the reasons behind the regional distribution (Korea, China, and Vietnam) of such rare STs.


Author(s):  
Rudy Suarez ◽  
Karina Kusch ◽  
Claudio D. Miranda ◽  
Tianlu Li ◽  
Javier Campanini ◽  
...  

AbstractSeveral members of the Mycobacterium genus cause invasive infections in humans and animals. According to a recent phylogenetic analysis, some strains of Mycobacterium salmoniphilum (Msal), which are the main culprit in bacterial outbreaks in freshwater fish aquaculture, have been assigned to a separate branch containing Mycobacterium franklinii (Mfra), another species that causes infections in humans. However, this genus is little studied in an aquaculture context. Here, we isolated four Mycobacterium spp. strains from freshwater cultures of Atlantic and coho salmon in Chile and performed whole-genome sequencing for deep genomic characterization. In addition, we described the gross pathology and histopathology of the outbreaks. Several bioinformatic analyses were performed using the genomes of these four Mycobacterium isolates in conjunction with those of Msal strains, four Msal-like strains, and one Mfra strains, plus 17 other publicly available Mycobacterium genomes. We found that three isolates are clustered into the Msal branch, whereas one isolate clustered with the Mfra/Msal-like strains. We further evaluated the presence of virulence and antimicrobial resistance genes and observed that the four isolates were closely related to the Msal and Msal-like taxa and carried several antimicrobial resistance and virulence genes that are similar to those of other pathogenic members of the Mycobacterium clade. Altogether, our characterization Msal and Msal-like presented here shed new light on the basis of mycobacteriosis provides quantitative evidence that Mycobacterium strains are a potential risk for aquaculture asetiological agents of emerging diseases, and highlight their biological scopes in the aquaculture industry.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lindsay A. Rogers ◽  
Kayla Strong ◽  
Susan C. Cork ◽  
Tim A. McAllister ◽  
Karen Liljebjelke ◽  
...  

Enterococcus spp. have arisen as important nosocomial pathogens and are ubiquitous in the gastrointestinal tracts of animals and the environment. They carry many intrinsic and acquired antimicrobial resistance genes. Because of this, surveillance of Enterococcus spp. has become important with whole genome sequencing emerging as the preferred method for the characterization of enterococci. A scoping review was designed to determine how the use of whole genome sequencing in the surveillance of Enterococcus spp. adds to our knowledge of antimicrobial resistance in Enterococcus spp. Scoping review design was guided by the PRISMA extension and checklist and JBI Reviewer's Guide for scoping reviews. A total of 72 articles were included in the review. Of the 72 articles included, 48.6% did not state an association with a surveillance program and 87.5% of articles identified Enterococcus faecium. The majority of articles included isolates from human clinical or screening samples. Significant findings from the articles included novel sequence types, the increasing prevalence of vancomycin-resistant enterococci in hospitals, and the importance of surveillance or screening for enterococci. The ability of enterococci to adapt and persist within a wide range of environments was also a key finding. These studies emphasize the importance of ongoing surveillance of enterococci from a One Health perspective. More studies are needed to compare the whole genome sequences of human enterococcal isolates to those from food animals, food products, the environment, and companion animals.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Tom J. B. de Man ◽  
Joseph D. Lutgring ◽  
David R. Lonsway ◽  
Karen F. Anderson ◽  
Julia A. Kiehlbauch ◽  
...  

ABSTRACTAntimicrobial resistance is a threat to public health globally and leads to an estimated 23,000 deaths annually in the United States alone. Here, we report the genomic characterization of an unusualKlebsiella pneumoniae, nonsusceptible to all 26 antibiotics tested, that was isolated from a U.S. patient. The isolate harbored four known beta-lactamase genes, including plasmid-mediatedblaNDM-1andblaCMY-6, as well as chromosomalblaCTX-M-15andblaSHV-28, which accounted for resistance to all beta-lactams tested. In addition, sequence analysis identified mechanisms that could explain all other reported nonsusceptibility results, including nonsusceptibility to colistin, tigecycline, and chloramphenicol. Two plasmids, IncA/C2 and IncFIB, were closely related to mobile elements described previously and isolated from Gram-negative bacteria from China, Nepal, India, the United States, and Kenya, suggesting possible origins of the isolate and plasmids. This is one of the firstK. pneumoniaeisolates in the United States to have been reported to the Centers for Disease Control and Prevention (CDC) as nonsusceptible to all drugs tested, including all beta-lactams, colistin, and tigecycline.IMPORTANCEAntimicrobial resistance is a major public health threat worldwide. Bacteria that are nonsusceptible or resistant to all antimicrobials available are of major concern to patients and the public because of lack of treatment options and potential for spread. AKlebsiella pneumoniaestrain that was nonsusceptible to all tested antibiotics was isolated from a U.S. patient. Mechanisms that could explain all observed phenotypic antimicrobial resistance phenotypes, including resistance to colistin and beta-lactams, were identified through whole-genome sequencing. The large variety of resistance determinants identified demonstrates the usefulness of whole-genome sequencing for detecting these genes in an outbreak response. Sequencing of isolates with rare and unusual phenotypes can provide information on how these extremely resistant isolates develop, including whether resistance is acquired on mobile elements or accumulated through chromosomal mutations. Moreover, this provides further insight into not only detecting these highly resistant organisms but also preventing their spread.


Sign in / Sign up

Export Citation Format

Share Document