scholarly journals Thermal and Energy-Efficiency Assessment of Hybrid CLT–glass Façade Elements

Author(s):  
Vlatka Rajčić

Façade elements are a building component that satisfies multiple performance parameters. Among other things, “advanced façades” take advantage of hybrid solutions, such as assembling laminated materials. In addition to the enhanced mechanical properties that are typical of optimally composed hybrid structural components, these systems are energy-efficient, durable, and offer lighting comfort and optimal thermal performance, an example of which is the structural solution developed in collaboration with the University of Zagreb and the University of Ljubljana within the Croatian Science Foundation VETROLIGNUM project. The design concept involves the mechanical interaction of timber and glass load-bearing members without sealing or bonding the glass-to-timber surfaces. Following earlier research efforts devoted to the structural analysis and optimization of thus-assembled hybrid Cross-Laminated Timber (CLT)-glass façade elements, in this paper, special focus is given to a thermal and energy performance investigation under ordinary operational conditions. A simplified numerical model representative of a full-size building is first presented by taking advantage of continuous ambient records from a Live-Lab mock-up facility in Zagreb. Afterwards, a more detailed Finite Element (FE) numerical analysis is carried out at the component level to further explore the potential of CLT–glass façade elements. The collected numerical results show that CLT–glass composite panels can offer stable and promising thermal performance for façades similar to national and European standard requirements.

2020 ◽  
Vol 10 (9) ◽  
pp. 3071
Author(s):  
Vlatka Rajčić ◽  
Nikola Perković ◽  
Chiara Bedon ◽  
Jure Barbalić ◽  
Roko Žarnić

Façade elements are a building component that satisfies multiple performance parameters. Among other things, “advanced façades” take advantage of hybrid solutions, such as assembling laminated materials. In addition to the enhanced mechanical properties that are typical of optimally composed hybrid structural components, these systems are energy-efficient, durable, and offer lighting comfort and optimal thermal performance, an example of which is the structural solution developed in collaboration with the University of Zagreb and the University of Ljubljana within the Croatian Science Foundation VETROLIGNUM project. The design concept involves the mechanical interaction of timber and glass load-bearing members without sealing or bonding the glass-to-timber surfaces. Following earlier research efforts devoted to the structural analysis and optimization of thus-assembled hybrid Cross-Laminated Timber (CLT)-glass façade elements, in this paper, special focus is given to a thermal and energy performance investigation under ordinary operational conditions. A simplified numerical model representative of a full-size building is first presented by taking advantage of continuous ambient records from a Live-Lab mock-up facility in Zagreb. Afterwards, a more detailed Finite Element (FE) numerical analysis is carried out at the component level to further explore the potential of CLT–glass façade elements. The collected numerical results show that CLT–glass composite panels can offer stable and promising thermal performance for façades similar to national and European standard requirements.


Author(s):  
Vlatka Rajčić ◽  
Nikola Perković ◽  
Chiara Bedon ◽  
Jure Barbalić ◽  
Roko Zarnic

Facade elements are known to represent a building component with multiple performance parameters to satisfy. Among others, “advanced facades” take advantage of hybrid solutions, like the assemblage of laminated materials. In addition to enhanced mechanical properties that are typical of optimally composed hybrid structural components, these systems are energy-efficient, durable, and offer lightening comfort and optimal thermal performance. This is the case of the structural solution developed in joint research efforts of the University of Zagreb and the University of Ljubljana, within the Croatian Science Foundation VETROLIGNUM project. The design concept involves the mechanical interaction of timber and glass load-bearing members, without sealing or bonded glass-to-timber surfaces. Laminated glass infilled timber frames are recognized as a new generation of structural members with relevant load-carrying capacity (and especially the enhancement of earthquake resistance of framed systems), but also energy-efficient and cost-effective solutions.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4163
Author(s):  
Federico Orsini ◽  
Paola Marrone ◽  
Silvia Santini ◽  
Lorena Sguerri ◽  
Francesco Asdrubali ◽  
...  

Climate change (CC) is predominantly connected to greenhouse gas (GHG) emissions from the construction sector. It is clear how it is necessary to rethink construction materials in order to reduce GHG emissions. Among the various strategies proposed, recent research has investigated the potential of smart materials. This study in particular aims to develop an innovative building component that combines high energy performance with reduced thickness and weight. For this reason, the potential of Phase Change Materials (PCM) in cement-based mixes is investigated, comparing the performance of a traditional mix with two innovative mixes made with the addition of 3% and 7% PCM. This work characterizes the new material, analyzing its mechanical and thermal performance, highlighting how the mix strength decreases as the PCM ratio increases; however, both mixes may be considered suitable for masonry structures and may be classified as M5 and M15. Furthermore, from the analysis of the thermal performance, it emerges that the mix presents good behavior in terms of insulating properties.


2006 ◽  
Vol 3 (3) ◽  
pp. 226-233 ◽  
Author(s):  
Andrea Baratella ◽  
Roberto Bove ◽  
Piero Lunghi

Testing the performance of fuel cells is an important key for verifying technology improvements and for demonstrating their potential. However, due to the novelty of this technology, there is not a standardized procedure for testing fuel cell performance. In order to fully investigate fuel cell performance, the behavior must be known under a wide range of operational conditions. Furthermore, in order to compare results coming from different test teams, a set of procedures and parameters to evaluate single cell performance should be defined. The research group of the Fuel Cell Laboratory of the University of Perugia is conducting performance tests on single cells, focusing on defining test procedures to find effective parameters to be used to compare tests performed by different teams. This work demonstrates how the testing parameters developed by the team allow one to perform advanced control on test procedures, to understand test results, and to compare them with tests carried out under different operational conditions. The entire analysis is easily conducted by using a single parameter variation hyperspace approach. The experimental results obtained on single fuel cells are reported.


Author(s):  
Benjamin Kirollos ◽  
Thomas Povey

The continuing maturation of metal laser-sintering technology (DMLS) presents the opportunity to de-risk the engine design process by experimentally down-selecting HPNGV cooling designs using laboratory tests of laser-sintered — instead of cast — parts to assess thermal performance. Such tests could be seen as supplementary to thermal-paint-test engines, which are used during certification to validate cooling system designs. In this paper, we compare conventionally cast and laser-sintered titanium alloy parts in back-to-back experimental tests at engine-representative conditions over a range of coolant mass flow rates. Tests were performed in the University of Oxford Annular Sector Heat Transfer Facility. The thermal performance of the cast and laser-sintered parts — measured using new infra-red processing techniques — is shown to be very similar, demonstrating the utility of laser-sintered parts for preliminary engine thermal assessments. We conclude that the methods reported in this paper are sufficiently mature to make assessments which could influence engine development programmes.


2020 ◽  
Vol 10 (10) ◽  
pp. 3622 ◽  
Author(s):  
Adil Al-Falahi ◽  
Falah Alobaid ◽  
Bernd Epple

The electrical power consumption of refrigeration equipment leads to a significant influence on the supply network, especially on the hottest days during the cooling season (and this is besides the conventional electricity problem in Iraq). The aim of this work is to investigate the energy performance of a solar-driven air-conditioning system utilizing absorption technology under climate in Baghdad, Iraq. The solar fraction and the thermal performance of the solar air-conditioning system were analyzed for various months in the cooling season. It was found that the system operating in August shows the best monthly average solar fraction (of 59.4%) and coefficient of performance (COP) (of 0.52) due to the high solar potential in this month. Moreover, the seasonal integrated collector efficiency was 54%, providing a seasonal solar fraction of 58%, and the COP of the absorption chiller was 0.44, which was in limit, as reported in the literature for similar systems. A detailed parametric analysis was carried out to evaluate the thermal performance of the system and analyses, and the effect of design variables on the solar fraction of the system during the cooling season.


2021 ◽  
Vol 3 ◽  
Author(s):  
Shima Hosseinzadeh ◽  
Mehrdad Biglari ◽  
Dietmar Fey

Non-volatile memory (NVM) technologies offer a number of advantages over conventional memory technologies such as SRAM and DRAM. These include a smaller area requirement, a lower energy requirement for reading and partly for writing, too, and, of course, the non-volatility and especially the qualitative advantage of multi-bit capability. It is expected that memristors based on resistive random access memories (ReRAMs), phase-change memories, or spin-transfer torque random access memories will replace conventional memory technologies in certain areas or complement them in hybrid solutions. To support the design of systems that use NVMs, there is still research to be done on the modeling side of NVMs. In this paper, we focus on multi-bit ternary memories in particular. Ternary NVMs allow the implementation of extremely memory-efficient ternary weights in neural networks, which have sufficiently high accuracy in interference, or they are part of carry-free fast ternary adders. Furthermore, we lay a focus on the technology side of memristive ReRAMs. In this paper, a novel memory model in the circuit level is presented to support the design of systems that profit from ternary data representations. This model considers two read methods of ternary ReRAMs, namely, serial read and parallel read. They are extensively studied and compared in this work, as well as the write-verification method that is often used in NVMs to reduce the device stress and to increase the endurance. In addition, a comprehensive tool for the ternary model was developed, which is capable of performing energy, performance, and area estimation for a given setup. In this work, three case studies were conducted, namely, area cost per trit, excessive parameter selection for the write-verification method, and the assessment of pulse width variation and their energy latency trade-off for the write-verification method in ReRAM.


Author(s):  
Elisa Penalvo-López ◽  
F. Javier Cárcel-Carrasco ◽  
Joaquín Montañana-Romeu ◽  
Vicente León-Martínez

Energy efficiency in buildings is one of the main challenges in EU policy, since it is difficult to find common strategies and policies among Member States.  This article describes the USE Efficiency project, an initiative to create a common training framework for energy efficiency systems in buildings based on the Energy Performance Building Directive (EPBD), through university actions. Universities and students are proposed as shining examples both for energy efficiency solutions and for energy efficiency behaviour.  Moreover, involving university students guarantees acting on closest future market players and most convincing actor in diffusion of public opinions. The project aims to improve energy efficiency in university buildings and to establish training program for students around European countries.  In fact, this activity involves 9 Universities (Technology Faculties and Faculties of Engineering) and 4 technological and market players from widespread countries in EU.Initially, a mapping of the methodologies used for evaluating energy efficiency at the different countries is carried out. Students are trained in energy efficiency methods and strategies, having real work experience implementing these Energy Performance Assessment (EPA) methodologies in their own buildings. The wide geographical coverage of the consortium allows an important crossover of methodologies to achieve technical results even to a professional and technological level. Then, the analysed buildings at each university are monitored in order to collect data, which are then used to plan solutions to improve energy performance of the university buildings. This paper describes this innovative training initiative, which involves students as main actors, working and interacting together with professors and technicians in order to improve energy efficiency in their educational centres.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Andrea Keck Frei ◽  
Mirjam Kocher ◽  
Christine Bieri Buschor

Purpose The purpose of this study is to examine career-change student teachers’ practice-based learning in teacher training, with a special focus on the support they received. Design/methodology/approach This study is based on a qualitative content analysis of 15 group interviews, including 58 career-change student teachers and focuses on their learning at university and the workplace. Findings This paper indicates that career-change student teachers’ learning is task-related and based on interactions. It benefits from the support provided by actors at the university and workplace. Their learning is highly self-regulated and built on skills from prior professional and life experience. However, behaviourist learning and trial-and-error learning strategies are more often mentioned than constructionist learning and goal-oriented learning. Practical implications The findings underline the fact that universities and schools can enhance career-change student teachers’ learning by providing professional support, helping them to form links between experience from their prior profession, as well as their knowledge acquired at the university and experience from the workplace. Originality/value Until now, few studies have addressed workplace learning in teacher education. The present study aims to address this lack. Moreover, the study shows how career-change student teachers deal with the challenge of bridging the gap between theoretical and practical knowledge acquired during practice-based teacher education.


Sign in / Sign up

Export Citation Format

Share Document