scholarly journals Improvement of Postharvest Quality of Plum (Prunus domestica L.) Using Polysaccharide-Based Edible Coatings

Author(s):  
Sima Panahirad ◽  
Rahim Naghshiband-Hassani ◽  
Sara Bergin ◽  
Ramesh Katam ◽  
Nasser Mahna

Polysaccharide-based edible coatings are served as an attractive preservation method for postharvest maintenance of most fruits. The current study examined the effect of carboxymethylcellulose (CMC)- and pectin (Pec)- based edible coatings on weight loss, firmness, total soluble solids (TSS), pH¬, titratable acidity (TA), vitamin C (vit C), total phenolics, anthocyanin and flavonoid contents, total antioxidant capacity (based on DPPH) and the activities of peroxidase (POD), polyphenol oxidase (PPO) and polygalacturonase (PG) enzymes during cold storage. The results showed that each coating and their combinations caused positive effects in all measured parameters except weight loss. The applied coatings preserved firmness and improved total phenols, anthocyanin and flavonoid contents, antioxidant capacity and POD activity. In addition, the coatings retarded TSS and pH enhancement and TA and vit C loss and decreased PPO and PG activities. It could be stated that CMC at 1 % and Pec at 1.5 % separately demonstrated the best results at most measured parameters; and among the combinations 0.5 % Pec + 1.5 % CMC acted better than the other treatments. Henceforth, application of CMC and/or Pec and/or their combinations would be considered as favorable approaches to improve postharvest quality characteristics of plum fruit.

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1148 ◽  
Author(s):  
Sima Panahirad ◽  
Rahim Naghshiband-Hassani ◽  
Sara Bergin ◽  
Ramesh Katam ◽  
Nasser Mahna

Polysaccharide-based edible coatings are served as an attractive preservation method for postharvest maintenance of most fruits. The current study examined the effect of carboxymethylcellulose (CMC)- and pectin (Pec)-based edible coatings on titratable acidity (TA), firmness; vitamin C (vit C); total soluble solids (TSS); pH; total phenolics; anthocyanin and flavonoid contents; total antioxidant capacity (based on 1,1-Diphenyl-2-picryl-hydrazyl hydrate (DPPH)); the activities of peroxidase (POD), polyphenol oxidase (PPO) and polygalacturonase (PG) enzymes; and weight loss during cold storage. The results showed that each coating and their combinations caused positive effects in all measured parameters except weight loss. The applied coatings preserved firmness and improved total phenols, anthocyanin and flavonoid contents, antioxidant capacity and POD activity. In addition, TSS decreased and pH values remained more or less stable with the coating application. The coatings delayed TA and vitamin C loss, and decreased enzymatic activities such as PPO and PG. It could be stated that CMC at 1% and Pec at 1.5% separately demonstrated the best results for most of the measured parameters; and 0.5% Pec + 1.5% CMC could be considered as the best combination. In conclusion, application of CMC, Pec, or their combinations would be considered as an interesting approach to improve postharvest quality characteristics of plum fruit.


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 892
Author(s):  
Nur Azlin Razali ◽  
Steven A. Sargent ◽  
Charles A. Sims ◽  
Jeffrey K. Brecht ◽  
Adrian D. Berry ◽  
...  

Pitaya is a non-climacteric fruit that has white or red flesh with numerous small, black seeds. It has a high moisture content; however, water loss during handling and storage negatively affects the fresh weight, firmness and appearance of the fruit, decreasing market value. Application of compatible postharvest coatings has been shown to benefit postharvest quality of many crops. The objective of this study was to evaluate the effect of two commercial coatings on weight loss and quality of pitaya during storage. Pitaya fruit were commercially harvested and sorted for uniformity of size and freedom from defects. Fruit were briefly immersed in either a vegetable oil-based coating (VOC; Sta-Fresh® 2981) or a carnauba-based coating (CC; Endura-Fresh™ 6100) according to manufacturer’s recommendations. Fruit immersed in tap water served as a control. Fruit were fan-dried at room temperature for 20 min, then stored at 7 °C with 85% relative humidity (RH) and evaluated for selected physical quality parameters each 5 days during 20 days. After each evaluation, fruit were peeled and frozen for later analysis of soluble solids content (SSC), total titratable acidity (TTA); on day 15 fresh samples were evaluated by an untrained consumer sensory panel. CC prevented exocarp shriveling for 15 days of storage, compared to uncoated pitaya (16.3% area affected); shriveling in VOC was intermediate and not significantly different from the other treatments. Mesocarp firmness remained constant throughout 15 days of storage regardless of treatment. Fruit exocarp h* angle increased slightly by day 20, becoming slightly less red, and there were no negative treatment effects for the other quality factors measured: SSC (11.33%), TTA (0.25%), weight loss (5.5%) or sensory evaluations (appearance, flavor, texture, firmness, and juiciness). After 20 days storage, appearance for fruit from all treatments was rated unacceptable due to development of anthracnose lesions. It was concluded that both CC and VOC maintained quality of pitaya for 15 days at 7 °C and 85% RH by delaying exocarp shriveling.


2020 ◽  
Vol 8 (5) ◽  
pp. 656 ◽  
Author(s):  
Xiang Fang ◽  
Qinchun Duan ◽  
Zhuo Wang ◽  
Fuyun Li ◽  
Jianxiong Du ◽  
...  

‘Red Globe’ table grapes are large, edible, seeded fruit with firm flesh that tastes good, but can have poor postharvest shelf-life. This study was conducted to explore the effects of products of Lactobacillus delbrueckii subsp. bulgaricus strain F17 and Leuconostoc lactis strain H52 on ‘Red Globe’ table grapes for the enhancement of shelf-life and improvement of grape quality characteristics during postharvest storage. Strains F17 and H52 were isolated from traditional fermented yak milk obtained in the Qinghai–Tibetan Plateau. Samples from untreated and treated grapes were analyzed for physicochemical, biochemical, and microbiological properties (weight loss, decay rate, pH, total soluble solids content, titratable acidity, total phenols, sensory evaluation, and microbial growth) for 20 days. The results demonstrated that supernatants from both strains significantly reduced weight loss, decay rate, aerobic mesophilic bacteria, and coliform bacteria counts; delayed maturity and senescence of table grapes; and reduced titratable acidity and total phenols. However, the supernatant of strain F17 was more effective and resulted in better sensory evaluations and had a significant inhibitory effect on yeast and molds by day 5. Meanwhile, the supernatant from strain H52 had a significant inhibitory effect on fungi over the whole storage period. In addition, the results of the Pearson correlation analysis suggested that weight loss, decay rate, total soluble solids content, and microorganisms were highly correlated with the sensory evaluation data and quality of postharvest grapes when treated with the products of strain F17. On the basis of these data and sensory organoleptic qualities, the supernatant containing products from strain F17 had the best potential as a biopreservative to improve the postharvest quality of ‘Red Globe’ table grapes.


2012 ◽  
Vol 92 (3) ◽  
pp. 541-551 ◽  
Author(s):  
Bernard Goyette ◽  
Clément Vigneault ◽  
Marie Thérèse Charles ◽  
Vijaya G. S. Raghavan

Goyette, B., Vigneault, C., Charles, M. T. and Raghavan, V. G. S. 2012. Effect of hyperbaric treatments on the quality attributes of tomato. Can. J. Plant Sci. 92: 541–551. An experimental hyperbaric system was conceptualized, designed and built to explore the effect of hyperbaric treatment on the quality attributes of tomato. Tomato fruits at the early breaker stage were subjected to hyperbaric pressures of 1, 3, 5, 7 or 9 atmabs for different durations (5, 10 or 15 d) at 13°C. The effect of hyperbaric treatment on postharvest quality of tomato fruit was evaluated with an emphasis on weight loss, firmness, color, titratable acidity (TA) and total soluble solids (TSS). Hyperbaric treated tomato fruit ripened more slowly and were characterized by lower respiration rate than fruits kept under ambient conditions. Significant differences in weight loss, color, lycopene concentration and firmness were found between hyperbaric treated and control tomato fruit. No significant difference was found in the sugar/acid ratio (TSS/TA).


2018 ◽  
Vol 10 (11) ◽  
pp. 401
Author(s):  
T. A. Oliveira ◽  
C. A. Paiva ◽  
A. C. Silva ◽  
L. V. Nascimento ◽  
R. H. L. Leite ◽  
...  

This study aimed to evaluate postharvest quality of Tommy Atkins mangoes treated with starch cassava and chitosan based coatings. Mango fruits were collected at physiological maturity. After cleaning, weighing and identification, fruits were submitted to the respective treatments and stored for 35 days in the Laboratório de Tecnologia de Alimentos, with weekly evaluations under refrigeration 13±1 ºC and 90±5% RH. The experiment was conducted in a completely randomized design, in factorial scheme with four treatments: control, cassava starch (CS), chitosan (CH), and cassava starch/chitosan (CS/CH) at a concentration of 2%, and six storage periods (0, 7, 14, 21, 28 and 35 days) with four replications. Fruits were evaluated in: appearance, weight loss, external color: luminosity and ΔE, pulp firmness, titratable acidity, soluble solids content, starch, total soluble sugars, reducing sugars and sucrose. Data were submitted to analysis of variance using SISVAR software and compared by Scott-Knott test at 5% of probability. It was observed a reduction in appearance, pulp firmness, titratable acidity, starch and reducing sugars and increase in weight loss, luminosity, ΔE, soluble solids, total soluble sugars and non-reducing sugars during storage. CS/CH coated fruits reported higher notes of appearance, lower weight loss and maintained color. Quality of physicochemical attributes: soluble solids, starch, total soluble sugars, reducing sugars and non-reducing sugars were strongly retarded.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 90 ◽  
Author(s):  
Miriam del Carmen Martínez-González ◽  
Silvia Bautista-Baños ◽  
Zormy Nacary Correa-Pacheco ◽  
María Luisa Corona-Rangel ◽  
Rosa I. Ventura-Aguilar ◽  
...  

Strawberries have a thin epidermis and a high respiration rate. The use of edible coatings containing chitosan nanoparticles (CSNPs) and propolis (P) has been effective in preserving the shelf life and antioxidant capacity of various fruit and vegetable products. The present research evaluated the effect of coatings with CSNPs and P on the quality, antioxidant compounds, and antioxidant capacity of strawberries. The specific coatings that were evaluated were chitosan (CS), CS+CSNPs33%, CS + CSNPs + P10%, CS + CSNPs + P20%, CS + CSNPs + P30%, and a control with no coating. The variables were weight loss, firmness, total soluble solids (TSS), color, phenols, total flavonoids, antioxidant capacity, and sensory characteristics. An ANOVA and a Tukey test (p ≤ 0.05) were used to analyze the data. Strawberries covered with CS + CSNPs + P10% showed the lowest weight loss (9.77%), while those covered with CS + CSNPs + P20% had the greatest firmness (4.96 N). CS + CSNPs + P coatings at 10%, 20%, and 30% concentrations maintained the antioxidant compounds and antioxidant capacity in the evaluated fruit (28.49 mg GAE g−1, 554.61 μg quercetin g−1, and 92.48% DPPH, respectively). The application of nanostructured coatings did not modify the sensory characteristics of the fruit. Coatings with CSNPs and/or P could therefore be a viable alternative for preserving the quality and antioxidant capacity of strawberries.


2015 ◽  
Vol 45 (3) ◽  
pp. 386-391 ◽  
Author(s):  
Josuel Alfredo Vilela Pinto ◽  
Márcio Renan Weber Schorr ◽  
Fabio Rodrigo Thewes ◽  
Deiverson Luiz Ceconi ◽  
Vanderlei Both ◽  
...  

This study aimed to evaluate the effect of different levels of relative humidity (RH) on the maintenance of Postharvest quality of 'Niagara Rosada' table grapes after cold storage at 0.5°C for 21 days. A completely randomized design was used, with five replicates of 18 clusters per treatment. The selected levels of relative humidity were 85, 90, 95 and 100%, obtained by means of electronic humidity controllers. The fruits were evaluated in relation to rot incidence, berry cracking, browning rate, respiratory rate, titratable acidity, soluble solids, resistance to abscission, berry drop and weight loss. The evaluations were assessed at 20 days of storage and after two and four days of shelf-life (20°C; 85% RH). The results showed that as higher as relative humidity, higher is rot incidence and that the variables rachis browning and weight loss were inversely related to relative humidity. Resistance to abscission at the end of storage was higher when humidity ranged between 90 and 95%, but it was not affected after transfer to shelf-life from cold storage. Relative humidity ranging between 90 and 95% offer the best conditions to maintain the Postharvest quality of 'Niagara Rosada' table grapes


2016 ◽  
Vol 5 (2) ◽  
pp. 23 ◽  
Author(s):  
Joyce Chepngeno ◽  
Willis O Owino ◽  
John Kinyuru ◽  
Ngoni Nenguwo

<p>Precooling and postharvest application of calcium chloride (CaCl<sub>2</sub>) on produce has positive effects in maintaining the produce quality during storage. However, there is variation in the response of the produce to different CaCl<sub>2 </sub>concentrations<sub>. </sub>As a result, there is need to establish optimal concentrations of calcium chloride that can extend postharvest life of targeted produce. Fresh good quality produce (tomatoes, carrots, courgettes and African eggplants) of uniform size and maturity were harvested and sampled into four portions. One was a control, hydrocooled with water only at 2±1 <sup>0</sup>C and the others were hydrocooled with water containing CaCl<sub>2</sub> at 0.5%, 1.0% and 1.5%. After hydrocooling, tomatoes, African eggplants and courgettes were stored at 10 <sup>0</sup>C, while carrots were stored at 7 <sup>0</sup>C, all at 95% constant relative humidity, and sampled every two days for quality assessment. Weight loss, chilling injury, vitamin c and beta-carotene loss were reduced by application of calcium chloride. Titratable acidity decrease and increase in total soluble solids and specific sugars was also slowed by application of CaCl<sub>2</sub>.</p>


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 433D-433
Author(s):  
T. Vilasachandran ◽  
Steven A. Sargent

Pericarp browning, weight loss, and the associated quality deterioration are the unsolved postharvest problems of lychee (Litchi chinensis Sonn.). Freshly harvested fruits (`Brewster') were stored ± plastic wrap (99% and 84% relative humidity, RH, respectively) and ± panicle at 5°C for 18 days to simulate commercial handling scenarios. There were no significant losses in pericarp color (L*, hue angle, chroma value), total soluble solids, and total sugars from initial values for wrapped fruits. Wrapped lychees were 100% marketable, compared to 17% for unwrapped fruits. The former retained higher weight, moisture content and total titratable acidity (TTA, pulp), and lower pulp pH. Colletotrichum sp., Cladosporium sp., and Alternaria sp. caused decay in 56% of unwrapped fruits, whereas wrapped fruits were free of decay. Fruits with panicles had significantly higher weight loss (3%) than clipped fruits for both wrapped and unwrapped fruits. Pulp TTA tended to decrease and pH to increase more in fruits with panicle. Postharvest quality of lychee fruits was significantly extended by removing the panicle and maintaining nearly saturated RH during handling and storage.


HortScience ◽  
2019 ◽  
Vol 54 (2) ◽  
pp. 337-343 ◽  
Author(s):  
Anna Marín ◽  
Anne Plotto ◽  
Lorena Atarés ◽  
Amparo Chiralt

Lactic acid bacteria (LAB) have been shown to prevent the growth and activity of several postharvest pathogen fungi in fruit and vegetables because of their ability to produce antimicrobial metabolites. Edible coatings (ECs) can be used as carriers of LAB and could provide an alternative natural preservation method. The effectiveness of Lactobacillus plantarum against fungal decay on grapes applied together with EC was studied. Different formulations with or without L. plantarum were considered, using pregelatinized potato starch (PS) or sodium caseinate (NaC) as main components of the coating matrices. In some of the formulations, oleic acid (OA) was added as a surfactant. The population dynamics of the bacterium and its ability to control fungal decay were studied together with the assessment of fruit quality. NaC-based formulations improved survival of L. plantarum on fruit surface after 7 days of storage in comparison with a water control. On the other hand, L. plantarum in PS-based formulation without OA reduced Botrytis incidence more than when applied in NaC formulation or in water. Coatings had little effect on berry quality (weight, color, firmness, and soluble solids content) of grapes throughout storage, although some of the coated samples maintained acidity and maturity index during storage better than others. Therefore, LAB applied in ECs could provide a viable biocontrol method for postharvest disease in grapes.


Sign in / Sign up

Export Citation Format

Share Document