scholarly journals Two-Objective Optimization of a Kaplan Turbine Draft Tube Using a Response Surface Methodology

Author(s):  
Riccardo Orso ◽  
Ernesto Benini ◽  
Moreno Minozzo ◽  
Riccardo Bergamin

The overall cost of a hydropower plant is mainly due to the expenses for civil works, mechanical equipment (turbine and control units) and electrical components. The goal of a new draft tube design is to obtain a geometry that reduces investment costs, especially the excavation ones, but the primary driver is to increase the overall machine efficiency allowing for reduced payback time. In the present study, an optimization study of the elbow-draft tube assembly of a Kaplan turbine was conducted. A CFD model for the complete turbine has been developed and validated; next, an optimization of the draft tube alone was performed using a Design of Experiments technique; finally, several optimum solutions for the draft tube were obtained using a Response Surface technique aiming at maximizing pressure recovery and minimizing flow losses. A selection of optimized geometries was subsequently post-checked using the validated model of the entire turbine and a detailed flow analysis on the obtained results could make it possible to provide insight into the improved designs. It was observed that efficiency could be improved by 1% (in relative terms), and the mechanical power increased by 1,8% (in relative terms) with respect to the baseline turbine.

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4899
Author(s):  
Riccardo Orso ◽  
Ernesto Benini ◽  
Moreno Minozzo ◽  
Riccardo Bergamin ◽  
Andrea Magrini

The overall cost of a hydropower plant is mainly due to the expenses of civil works, mechanical equipment (turbine and control units) and electrical components. The goal of a new draft tube design is to obtain a geometry that reduces investment costs, especially the excavation ones, but the primary driver is to increase overall machine efficiency, allowing for a reduced payback time. In the present study, an optimization study of the elbow-draft tube assembly of a Kaplan turbine was conducted. First, a CFD model for the complete turbine was developed and validated. Next, an optimization of the draft tube alone was performed using a design of experiments technique. Finally, several optimum solutions for the draft tube were obtained using a response surface technique aiming at maximizing pressure recovery and minimizing flow losses. A selection of optimized geometries was subsequently post-checked using the validated model of the entire turbine, and a detailed flow analysis on the obtained results made it possible to provide insights into the improved designs. It was observed that efficiency could be improved by 1% (in relative terms), and the mechanical power increased by 1.8% (in relative terms) with respect to the baseline turbine.


Author(s):  
Juergen Schiffer ◽  
Helmut Benigni ◽  
Helmut Jaberg

Due to the low electricity prices in central Europe, cost optimisations related to all parts of a new hydropower plant have become increasingly important. In case of a run-of-river hydropower plant using a vertical axis Kaplan turbine, one of the cost drivers are the excavation works. Thus, a decisive factor for the reduction of construction costs is the minimisation of the construction depth of the elbow-type draft tube. In course of the design phase of a new hydropower plant in Austria, an analysis of the impact of draft tube modifications on the performance of the Kaplan turbine was carried out by applying computational fluid dynamics. The net head of the turbine with a diameter of D = 3.15 m accounts for Hnet = 9.00 m and the maximum discharge per unit is Qmax = 57.5 m3/s. After it was proven that there is a good agreement of the numerically calculated and experimentally measured turbine efficiency for the original turbine configuration, various draft tube designs were tested in order to find out their impact on the turbine efficiency and to analyse the sources of draft tube losses in detail. Finally, it was possible to find a new draft tube design representing a compromise of reduced construction costs and acceptable turbine efficiency.


2021 ◽  
Vol 45 (4) ◽  
pp. 273-280
Author(s):  
Raju Kalakuntala ◽  
Srinath Surnani

The performance of heteropoly acid i.e., Tungstan phosphoric acid for the synthesis of butyl propionate at optimized conditions. Effect on conversion and yield of propionic acids using the Response Surface Methodology (RSM) were evaluated by different process parameters including catalyst loading, alcohol/acid molar ratio. There were no external and internal mass transmission limits. A quadratic model acquired by the variance study (ANOVA) has been shown to view experimental data successfully with the regression (R2 = 0.94 and R2 = 0.942) coefficients approaching to unity. The pseudo homogeneous kinetic model (PH) validated with experimental data to determine kinetic parameters i.e., activation energy (45.97 kJ/mol) and frequent factor (91319 L/mol-min).


2016 ◽  
Vol 823 ◽  
pp. 361-366
Author(s):  
Ana Maria Budai ◽  
Adrian Cuzmos ◽  
Cristian Fanica ◽  
Damaschin Pepa ◽  
Cosmin Ursoniu ◽  
...  

The paper present two different methods for measuring flow in hydropower, one direct and one indirect method. The study consists in comparing the results obtained by measurements made by both methods in a Romanian hydropower plant. The indirect method used is the Winter-Kennedy method. The other method involves direct measurement of the flow rate of water using a specialized outfit in this.


Author(s):  
Chan-Sol Ahn ◽  
Kwang-Yong Kim

Design optimization of a transonic compressor rotor (NASA rotor 37) using the response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. The Baldwin-Lomax turbulence model was used in the flow analysis. Three design variables were selected to optimize the stacking line of the blade. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved. It was found that the optimization process provides reliable design of a turbomachinery blade with reasonable computing time.


2018 ◽  
Vol 19 (11) ◽  
pp. 2167-2172 ◽  
Author(s):  
Bong-Jo Ryu1 ◽  
Youngshik Kim ◽  
Bu-Jin Oh2 ◽  
Buhyun Shin1

Sign in / Sign up

Export Citation Format

Share Document