scholarly journals Bioactive Compounds from Monotheca Buxifolia Inhibit the Growth of Hepatocellular Carcinoma Cells

Author(s):  
Said Hassan ◽  
Ashfaq Rehman ◽  
Syed Babar Jamal ◽  
Yaqin Liu ◽  
Shaoyong Lu

The natural products and conventional chemotherapeutic drugs are believed to increase the cure rates of anti-cancer treatment while reducing their toxicity. The current study investigates the cytotoxic and apoptogenic effects of bioactive compounds from Monotheca buxifolia on Hep G2 cell lines. The effect on the viability of Hep G2 cells was evaluated by MTT assay; Morphological changes were studied, the apoptotic activity was demonstrated through Annexin-V-FITC/ PI, a molecular dynamics simulation study was conducted to explore the binding pattern of the compounds in the active site of the PPRAδ protein. The isolated compounds lauric acid, oleanolic acid, and bis(2-ethylhexyl) phthalate inhibited the growth of hepatocellular cancer cells, as determined by MTT assay and annexin V-FITC/PI. The IC50 value for lauric acid was 56.4584 ± 1.20 µg/ml, that for oleanolic acid was 31.9421 ± 1.03 µg/ml, and that for bis(2-ethylhexyl) phthalate was 83.8019 ± 2.18 µg/ml. After 24 h of treatment, 29.5% of Hep G2 cells treated with lauric acid, 52.1% of those treated with oleanolic acid, and 22.4% of those treated with bis(2-ethylhexyl) phthalate were apoptotic. Morphological assay and Hoechst staining microscopy revealed the morphological alterations of cell membrane accompanied by nuclear condensation after treatment. The high fluctuation indicates the high potency and adopting various interactions, and vice versa, the oleanolic acid showed highly residues fluctuation, which remains stable in the active site of PPARδ protein and involved in various interactions while remaining locally fluctuated in the binding site the other two compounds. In conclusion, a significant apoptogenic effect was exhibited by lauric acid, oleanolic acid, and bis(2-ethylhexyl) phthalate against HepG2 cells in inducing apoptosis. Our findings indicate that these bioactive compounds hold promise as potential therapeutic for hepatocellular carcinoma.

2009 ◽  
Vol 12 (3) ◽  
pp. 243 ◽  
Author(s):  
Chao-Mei Ma ◽  
Xiu-Hong Wu ◽  
Masao Hattori ◽  
Xi-Jun Wang ◽  
Yoshihiro Kano

Purpose: To evaluate oleanolic acid derivatives on liver disease related bioactivities, 29 oleanolic acid derivatives of several series were tested for their inhibitory activity on hepatitis C viral protease and for their cytotoxic effects on Hep G2 cells. Results: The amino derivatives showed potent cytotoxicity, among which, the beta-amino isomer exhibited more distinct cytotoxicity than the alpha-isomer. The cytotoxicity of hemiesters and hemiamides varied as the chain lengths varied. The oxalic and malonic hemiesters showed weaker cytototoxicity than oleanolic acid, while those with longer chain lengths showed higher cytotoxicity. Contrary to the cytotoxic activity, the free amino derivatives showed little inhibitory activity on HCV protease. All the hemiesters and hemiamides showed high activity against HCV protease. Conclusion: The results suggest that adding free amino group(s) to the skeletons of triterpenes may be an effective way of synthesis of anti-tumor compounds. Adding acidic groups to triterpene skeletons may be an effective way for producing anti-viral compounds.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Heba R. Al Refaey ◽  
Al-Sayeda A. Newairy ◽  
Mayssaa M. Wahby ◽  
Chris Albanese ◽  
Mohamed Elkewedi ◽  
...  

Abstract Background Recently, there is increasing awareness focused on the identification of naturally occurring anticancer agents derived from natural products. Manuka honey (MH) has been recognized for its biological properties as antimicrobial, antioxidant, and anticancer properties. However, its antiproliferative mechanism in hepatocellular carcinoma is not investigated. The current study focused mainly on investigating the molecular mechanism and synergistic effect of anticancer properties of MH on Doxorubicin (DOX)-mediated apoptotic cell death, using two different p53 statuses (HepG2 and Hep3B) and one non-tumorigenic immortalized liver cell line. Results MH treatment showed a proliferative inhibitory effect on tested cells in a dose-dependent manner with IC50 concentration of (6.92 ± 0.005%) and (18.62 ± 0.07%) for HepG2 and Hep3B cells, respectively, and induced dramatic morphological changes of Hep-G2 cells, which considered as characteristics feature of apoptosis induction after 48 h of treatment. Our results showed that MH or combined treatments induced higher cytotoxicity in p53-wild type, HepG2, than in p53-null, Hep3B, cells. Cytotoxicity was not observed in normal liver cells. Furthermore, the synergistic effect of MH and Dox on apoptosis was evidenced by increased annexin-V-positive cells and Sub-G1 cells in both tested cell lines with a significant increase in the percentage of Hep-G2 cells at late apoptosis as confirmed by the flow cytometric analysis. Consistently, the proteolytic activities of caspase-3 and the degradation of poly (ADP-ribose) polymerase were also higher in the combined treatment which in turn accompanied by significant inhibitory effects of pERK1/2, mTOR, S6K, oncogenic β-catenin, and cyclin D1 after 48 h. In contrast, the MH or combined treatment-induced apoptosis was accompanied by significantly upregulated expression of proapoptotic Bax protein and downregulated expression of anti-apoptotic Bcl-2 protein after 48 h. Conclusions Our data showed a synergistic inhibitory effect of MH on DOX-mediated apoptotic cell death in HCC cells. To our knowledge, the present study provides the first report on the anticancer activity of MH and its combined treatment with DOX on HCC cell lines, introducing MH as a promising natural and nontoxic anticancer compound.


2015 ◽  
Vol 20 (4) ◽  
pp. 241-249 ◽  
Author(s):  
Soojung Jin ◽  
Hyun-Jin Park ◽  
You Na Oh ◽  
Hyun Ju Kwon ◽  
Jeong-Hwan Kim ◽  
...  

2016 ◽  
Vol 11 (4) ◽  
pp. 1-8 ◽  
Author(s):  
Reneta Gevrenova ◽  
Dimitrina Zheleva-Dimitrova ◽  
Silviya Ruseva ◽  
Nikolay Denkov ◽  
Spiro Konstantinov ◽  
...  

1993 ◽  
Vol 70 (02) ◽  
pp. 273-280 ◽  
Author(s):  
Janos Kappelmayer ◽  
Satya P Kunapuli ◽  
Edward G Wyshock ◽  
Robert W Colman

SummaryWe demonstrate that in addition to possessing binding sites for intact factor V (FV), unstimulated peripheral blood monocytes also express activated factor V (FVa) on their surfaces. FVa was identified on the monocyte surface by monoclonal antibody B38 recognizing FVa light chain and by human oligoclonal antibodies H1 (to FVa light chain) and H2 (to FVa heavy chain) using immunofluorescence microscopy and flow cytometry. On Western blots, partially cleaved FV could be identified as a 220 kDa band in lysates of monocytes. In addition to surface expression of FVa, monocytes also contain intracellular FV as detected only after permeabilization by Triton X-100 by monoclonal antibody B10 directed specifically to the Cl domain not present in FVa. We sought to determine whether the presence of FV in peripheral blood monocytes is a result of de novo synthesis.Using in situ hybridization, no FV mRNA could be detected in monocytes, while in parallel control studies, factor V mRNA was detectable in Hep G2 cells and CD18 mRNA in monocytes. In addition, using reverse transcriptase and the polymerase chain reaction, no FV mRNA was detected in mononuclear cells or in U937 cells, but mRNA for factor V was present in Hep G2 cells using the same techniques. These data suggest that FV is present in human monocytes, presumably acquired by binding of plasma FV, and that the presence of this critical coagulation factor is not due to de novo synthesis.


Sign in / Sign up

Export Citation Format

Share Document