scholarly journals Comparative Study of Thermal Comfort Indices: A Melbourne CBD Case Study

Author(s):  
Anne WM Ng ◽  
Nitin Muttil ◽  
Fatma Balany ◽  
Bruke Zegeye

This study assesses Human Thermal Comfort in two selected areas: a Green Infrastructure (GI) area represented by a garden and a high-rise building area, in the Central Business District (CBD) of Melbourne, Australia. Three-dimensional microclimatic modelling software, ENVI-met version 4 was used to simulate the microclimate. The indices of Predicted Mean Vote (PMV), Physiological Equivalent Temperature (PET) and Universal Temperature Climate Index (UTCI) were used to quantify the level of thermal comfort in the research areas. The simulation results showed that at midday, the difference in temperature between the garden area and the high-rise building area was approximately 1°C. Increasing temperatures at midday led to a change in the level of thermal comfort for both the areas, even though it was not significant. In general, the thermal perception in the GI area was slightly ‘cooler’ than in the high-rise building area. The results of the study indicated the important role of GI in improving the thermal comfort in urban areas.

2020 ◽  
Vol 12 (5) ◽  
pp. 1961 ◽  
Author(s):  
Lili Zhang ◽  
Dong Wei ◽  
Yuyao Hou ◽  
Junfei Du ◽  
Zu’an Liu ◽  
...  

Urban parks are an important component of urban public green space and a public place where a large number of urban residents choose to conduct outdoor activities. An important factor attracting people to visit and stay in urban parks is its outdoor thermal comfort, which is also an important criterion for evaluating the liability of the urban environment. In this study, through field meteorological monitoring and a questionnaire survey, outdoor thermal comfort of different types of landscape space in urban parks in Chengdu, China was studied in winter and summer. Result indicated that (1) different types of landscape spaces have different thermal comforts, (2) air temperature is the most important factor affecting outdoor thermal comfort; (3) because the thermal sensation judgment of outdoor thermal comfort research in Chengdu area, an ASHRAE seven-sites scale can be used; (4) the neutral temperature ranges of Physiological Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI) in Chengdu in winter and summer were obtained through research; (5) and UTCI is the best index for evaluating outdoor thermal comfort in Chengdu. These findings provide theoretical benchmarks and technical references for urban planners and landscape designers to optimize outdoor thermal comfort in urban areas to establish a more comfortable and healthy living environment for urban residents.


2021 ◽  
Vol 13 (11) ◽  
pp. 6106
Author(s):  
Irantzu Alvarez ◽  
Laura Quesada-Ganuza ◽  
Estibaliz Briz ◽  
Leire Garmendia

This study assesses the impact of a heat wave on the thermal comfort of an unconstructed area: the North Zone of the Island of Zorrotzaurre (Bilbao, Spain). In this study, the impact of urban planning as proposed in the master plan on thermal comfort is modeled using the ENVI-met program. Likewise, the question of whether the urbanistic proposals are designed to create more resilient urban environments is analyzed in the face of increasingly frequent extreme weather events, especially heat waves. The study is centered on the analysis of temperature variables (air temperature and average radiant temperature) as well as wind speed and relative humidity. This was completed with the parameters of thermal comfort, the physiological equivalent temperature (PET) and the Universal Temperature Climate Index (UTCI) for the hours of the maximum and minimum daily temperatures. The results demonstrated the viability of analyzing thermal comfort through simulations with the ENVI-met program in order to analyze the behavior of urban spaces in various climate scenarios.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1322
Author(s):  
Zhiyong Zhang ◽  
Jianhua Dong ◽  
Qijiang He ◽  
Bing Ye

As an important part of the ecological infrastructure in urban areas, urban wetland parks have the significant ecological function of relieving the discomfort of people during their outdoor activities. In recent years, the specific structures and ecosystem services of urban wetland parks have been investigated from different perspectives. However, the microclimate and human thermal comfort (HTC) of urban wetland parks have rarely been discussed. In particular, the changing trends of HTC in different seasons and times have not been effectively presented. Accordingly, in this research, a monitoring platform was established in Xixi National Wetland Park, China, to continually monitor its microclimate in the long term. Via a comparison with a control site in the downtown area of Hangzhou, China, the temporal variations of the microclimate and HTC in the urban wetland park are quantified, and suggestions for clothing are also provided. The results of this study demonstrate that urban wetland parks can mitigate the heat island effect and dry island effect in summer. In addition, urban wetland parks can provide ecological services at midday during winter to mitigate the cold island effect. More importantly, urban wetland parks are found to exhibit their best performance in improving HTC during the daytime of the hot season and the midday period of the cold season. Finally, the findings of this study suggest that citizens should take protective measures and enjoy their activities in the morning, evening, or at night, not at midday in hot weather. Moreover, extra layers are suggested to be worn before going to urban wetland parks at night in cold weather, and recreational activities involving accommodation are not recommended. These findings provide not only basic scientific data for the assessment of the management and ecological health value of Xixi National Wetland Park and other urban wetland parks with subtropical monsoon climates, but also a reference for visitor timing and clothing suggestions for recreational activities.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3577
Author(s):  
Fatma Balany ◽  
Anne WM Ng ◽  
Nitin Muttil ◽  
Shobha Muthukumaran ◽  
Man Sing Wong

Research on urban heat mitigation has been growing in recent years with many of the studies focusing on green infrastructure (GI) as a strategy to mitigate the adverse effects of an urban heat island (UHI). This paper aims at presenting a review of the range of findings from GI research for urban heat mitigation through a review of scientific articles published during the years 2009–2020. This research includes a review of the different types of GI and its contribution for urban heat mitigation and human thermal comfort. In addition to analysing different mitigation strategies, numerical simulation tools that are commonly used are also reviewed. It is seen that ENVI-met is one of the modelling tools that is considered as a reliable to simulate different mitigation strategies and hence has been widely used in the recent past. Considering its popularity in urban microclimate studies, this article also provides a review of ENVI-met simulation results that were reported in the reviewed papers. It was observed that the majority of the research was conducted on a limited spatial scale and focused on temperature and human thermal comfort.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hanna Leona Lokys ◽  
Jürgen Junk ◽  
Andreas Krein

Projected climate change will cause increasing air temperatures affecting human thermal comfort. In the highly populated areas of Western-Central Europe a large population will be exposed to these changes. In particular Luxembourg—with its dense population and the large cross-border commuter flows—is vulnerable to changing thermal stress. Based on climate change projections we assessed the impact of climate change on human thermal comfort over the next century using two common human-biometeorological indices, the Physiological Equivalent Temperature and the Universal Thermal Climate Index. To account for uncertainties, we used a multimodel ensemble of 12 transient simulations (1971–2098) with a spatial resolution of 25 km. In addition, the regional differences were analysed by a single regional climate model run with a spatial resolution of 1.3 km. For the future, trends in air temperature, vapour pressure, and both human-biometeorological indices could be determined. Cold stress levels will decrease significantly in the near future up to 2050, while the increase in heat stress turns statistically significant in the far future up to 2100. This results in a temporarily reduced overall thermal stress level but further increasing air temperatures will shift the thermal comfort towards heat stress.


ICCD ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 394-399
Author(s):  
Eka Purwa Laksana ◽  
Nifty Fath ◽  
Anggraeni Dyah Sulistiowati ◽  
Harfa Iskandaria

Dense settlements in urban areas are one of the problems in DKI Jakarta. RT.03 / RW.01 Kel. Petukangan Utara, Kec. Pesanggrahan Jakarta Selatan is one of the densest settlements in DKI Jakarta which is located side by side with Universitas Budi Luhur. Based on SNI 03-1733-2004, the level of population density in the region is included in the category of High Density. This can be seen from the houses lined up along the road with little provision of Green Open Space. The community develops the need for building area by maximizing the area of land for building. This impacts the lack of air circulation in accordance with SNI-14-1993-03 about the thermal comfort area of buildings which are conditioned for Indonesians, as well as the lack of lighting in accordance with SNI 03-6575-2001 regarding illumination standards for the light of a room.With thermal comfort and illumination that is not in according to standards in the region, a Community Service activity was held by the Faculty of Engineering of the Universitas Budi Luhur to add community knowledge about how to make thermal comfort and illumination in homes using energy efficient. Thermal comfort can be fulfilled by making vertical greening on limited land, While the comfort of illumination can be fulfilled by using LED lights. The activity uses community empowerment methods, so that the community can independently make vertical greening in their respective homes and know the benefits for thermal comfort and can use LED lights in their respective homes and know the benefits to save electricity. The results of the Community Empowerment Towards Energy Saving Settlements at RT.03 / RW.01 Kel Petukangan Utara Kec. Pesanggrahan Jakarta Selatan, is that the region has vertical greening as a natural air conditioning system and uses an LED lighting system as an energy efficient lighting.


2016 ◽  
Vol 1 (1) ◽  
pp. 348
Author(s):  
Nooriati Taib ◽  
Zalila Ali

One passive approach that can significantly reduce energy usage in high-rise buildings is through the creation of non-air conditioned spaces such as transitional spaces. Optimizing passive design would reduce wastage associated with the building’s energy consumption. The study measures the thermal comfort of three types of transitional spaces (sky court, balcony, and rooftop) in a high-rise office building. Based on the assessment of Physiological Equivalent Temperature (PET), the outcome showed significant differences in PET in all locations in both wet and dry season. The effectiveness of such area can be improved with the contributions of landscape, maximizing natural ventilation and day lighting where possible.© 2016. The Authors. Published for AMER ABRA by e-International Publishing House, Ltd., UK. Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies, Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia.Keywords: Thermal comfort; transitional spaces; high-rise; Physiological Equivalent Temperature


2019 ◽  
Vol 8 (12) ◽  
pp. 579 ◽  
Author(s):  
Zohreh Masoumi ◽  
John van L.Genderen ◽  
Jamshid Maleki

A comprehensive fire risk assessment is very important in dense urban areas as it provides an estimation of people at risk and property. Fire policy and mitigation strategies in developing countries are constrained by inadequate information, which is mainly due to a lack of capacity and resources for data collection, analysis, and modeling. In this research, we calculated the fire risk considering two aspects, urban infrastructure and the characteristics of a high-rise building for a dense urban area in Zanjan city. Since the resources for this purpose were rather limited, a variety of information was gathered and information fusion techniques were conducted by employing spatial analyses to produce fire risk maps. For this purpose, the spatial information produced using unmanned aerial vehicles (UAVs) and then attribute data (about 150 characteristics of each high-rise building) were gathered for each building. Finally, considering high-risk urban infrastructures, like the position of oil and gas pipes and electricity lines and the fire safety analysis of high-rise buildings, the vulnerability map for the area was prepared. The fire risk of each building was assessed and its risk level was identified. Results can help decision-makers, urban planners, emergency managers, and community organizations to plan for providing facilities and minimizing fire hazards and solve some related problems to reduce the fire risk. Moreover, the results of sensitivity analysis (SA) indicate that the social training factor is the most effective causative factor in the fire risk.


2019 ◽  
Vol 149 ◽  
pp. 640-654 ◽  
Author(s):  
Teresa Zölch ◽  
Mohammad A. Rahman ◽  
Elisabeth Pfleiderer ◽  
Georg Wagner ◽  
Stephan Pauleit

2018 ◽  
Vol 33 ◽  
pp. 01040 ◽  
Author(s):  
Lyubov Manukhina ◽  
Natal'ja Samosudova

The article analyzes the main reasons for the development of high-rise building construction the most important of which-is a limitation of the urban areas and, consequently, the high price of land reserved for construction. New engineering and compositional solutions for the creation of new types of buildings are considered - complex technical designs of a large number of storeys completely meet the new requirements for safety and comfort. Some peculiarities of designing high-rise buildings and searching for optimal architectural and planning solutions are revealed since, with external architectural simplicity, high-rise buildings have complex structural and technological and space-planning solutions. We consider the specific features of a high-rise housing in various countries around the world, including Russia, such as the layout of the multi-storey residential buildings, depending on the climatic characteristics of the regions, assessment of the geological risk of the construction site, the choice of parameters and functional purpose of the sections of the territory of high-rise construction, location of the town-planning object for substantiating the overall dimensions of the building, assessment of changes aeration and engineering and hydrological conditions of the site. A special place in the article on the problems of improvement of the territory, the device of courtyards, landscaping, the device of playing and sports grounds. The main conclusion in the article is the following problem - when developing high-rise housing construction, the development of high-rise housing, and an increase in the population density in the territory of large cities of Russia, necessary to create a comfortable and safe level of residents living and not a decrease, but an improvement in the quality of the urban environment.


Sign in / Sign up

Export Citation Format

Share Document