scholarly journals The Association Between Early-Life Gut Microbiota and Long-Term Health and Diseases

Author(s):  
Anujit Sarkar ◽  
Ji Youn Yoo ◽  
Samia Valeria Ozorio Dutra ◽  
Katherine Hope Morgan ◽  
Maureen Groer

Abstract: Early life gut microbiota have been increasingly recognized as major contributors to short and/or long-term human health and diseases. Numerous studies have demonstrated that human gut microbial colonization begins at birth but continues to develop a succession of taxonomic abundances for two to three years until the gut microbiota reaches adult-like diversity and proportions. Several factors, including gestational age (GA), delivery mode, birth weight, feeding types, antibiotic exposure, maternal microbiome and diet influence the diversity, abundance and function of the early life gut microbiota. Gut microbial life is essential for assisting with the digestion of food substances to release nutrients, exerting control over pathogens, stimulating or modulating the immune system and influencing many systems such as the liver, brain, and endocrine system. Microbial metabolites play multiple roles in these interactions. Furthermore, studies provide evidence supporting that imbalances of the gut microbiota in early life, referred to as dysbiosis, are associated with specific childhood or adult disease outcomes, such as asthma, atopic dermatitis, diabetes, allergic diseases, obesity, cardiovascular diseases (CVD) and neurological disorders. These findings support that the human gut microbiota may play a fundamental role in the risk of acquiring diseases that may be programmed during the early life stage. In fact, it is critical to explore the role of the human gut microbiota in early life. In this review, we summarize the general understanding of the colonization and development of the gut microbiota in early life, highlighting the recent findings regarding the relationship between the gut microbiota composition and their metabolites, and immune functions, which could significantly influence long-term health and disease. We then review known pathophysiological interactions of the early gut microbiome with a number of well characterized diseases and pose potential etiological mechanisms.

2021 ◽  
Vol 10 (3) ◽  
pp. 459
Author(s):  
Anujit Sarkar ◽  
Ji Youn Yoo ◽  
Samia Valeria Ozorio Dutra ◽  
Katherine H. Morgan ◽  
Maureen Groer

Early life gut microbiota have been increasingly recognized as major contributors to short and/or long-term human health and diseases. Numerous studies have demonstrated that human gut microbial colonization begins at birth, but continues to develop a succession of taxonomic abundances for two to three years until the gut microbiota reaches adult-like diversity and proportions. Several factors, including gestational age (GA), delivery mode, birth weight, feeding types, antibiotic exposure, maternal microbiome, and diet, influence the diversity, abundance, and function of early life gut microbiota. Gut microbial life is essential for assisting with the digestion of food substances to release nutrients, exerting control over pathogens, stimulating or modulating the immune system, and influencing many systems such as the liver, brain, and endocrine system. Microbial metabolites play multiple roles in these interactions. Furthermore, studies provide evidence supporting that imbalances of the gut microbiota in early life, referred to as dysbiosis, are associated with specific childhood or adult disease outcomes, such as asthma, atopic dermatitis, diabetes, allergic diseases, obesity, cardiovascular diseases (CVD), and neurological disorders. These findings support that the human gut microbiota may play a fundamental role in the risk of acquiring diseases that may be programmed during early life. In fact, it is critical to explore the role of the human gut microbiota in early life.


PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0153134 ◽  
Author(s):  
Pilou L. H. R. Janssens ◽  
John Penders ◽  
Rick Hursel ◽  
Andries E. Budding ◽  
Paul H. M. Savelkoul ◽  
...  

Author(s):  
Bruno Galvão de Campos ◽  
Mariana Bruni Marques do Prado e Silva ◽  
Francisco Avelelas ◽  
Frederico Maia ◽  
Susana Loureiro ◽  
...  

2021 ◽  
Author(s):  
Leah M. Thornton Hampton ◽  
Miranda G. Finch ◽  
Christopher J. Martyniuk ◽  
Barney J. Venables ◽  
Marlo K. Sellin Jeffries

Abstract Current evidence suggests thyroid hormones (THs) impact development of the immune system, but few studies have explored the connection between the thyroid and immune systems, especially in fish. This is important as some environmental contaminants disrupt TH homeostasis and may thus have negative impacts on the immune system. To determine the long-term consequences of early life stage (ELS) hypothyroidism on immune function, fathead minnows were exposed to the model thyroid hormone suppressant propylthiouracil (PTU) from <1 to 30 days post hatch. Fish were transferred to clean water and raised to adulthood at which time, several aspects of immune function were evaluated. Ex vivo assessment of immune cell function revealed significant decreases in the phagocytic cell activity of PTU-treated fish relative to the controls. Fish were also injected with Yersinia ruckeri to evaluate their in vivo immune responses across a suite of endpoints (i.e., transcriptomic analysis, leukocyte counts, spleen index, hematocrit, bacterial load and pathogen resistance). The transcriptomic response to infection was significantly different between control and PTU-treated fish, though no differences in bacterial load nor pathogen resistance were noted. Overall, these results suggest that early life stage thyroid hormone suppression causes long-term impacts on immune function at the molecular and cellular levels suggesting a key role for TH signaling in normal immune system development. This study lays the foundation for further exploration into thyroid-immune crosstalk in fish. This is noteworthy as disruption of the thyroid system during development may have lasting effects on immune function in adulthood.


2021 ◽  
pp. 1-9
Author(s):  
Katri Korpela

Microbial colonization of the neonate is an important feature of normal birth. The gut microbiota has a central role in the programming of the host’s metabolism and immune function, with both immediate and long-term health consequences. During vaginal birth, the infant is exposed to diverse maternal microbes, of which specific faecal microbes colonize the infant’s gut. C-section eliminates the infant’s contact with maternal microbes, preventing vertical transmission of gut microbes. Consequently, infants are colonized by bacteria from the environment, including potential pathogens from the hospital environment. Recent studies have shown that intrapartum antibiotic exposure has a C-section-like effect on the infant gut microbiota. While the composition of the gut microbiota largely normalizes during the first year of life, epidemiological studies suggest that the aberrant early microbial exposures have long-term immunological and metabolic consequences. Because of the high prevalence of procedures that prevent normal gut microbiota development, effective methods to normalize the gut microbiota of neonates are urgently needed. Even more importantly, attention should be paid to the microbiota imbalance in C-section-born and antibiotic-exposed infants in clinical practice. Breastfeeding and probiotics are particularly important for infants with disrupted gut colonization.


Gut Microbes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 1791677
Author(s):  
M. Mulder ◽  
D. Radjabzadeh ◽  
J. C. Kiefte-de Jong ◽  
A. G. Uitterlinden ◽  
R. Kraaij ◽  
...  

2021 ◽  
Vol 288 (1942) ◽  
pp. 20201810
Author(s):  
Xiyan Xiong ◽  
Sara L. Loo ◽  
Li Zhang ◽  
Mark M. Tanaka

The human gut microbiota is transmitted from mother to infant through vaginal birth and breastfeeding. Bifidobacterium , a genus that dominates the infants’ gut, is adapted to breast milk in its ability to metabolize human milk oligosaccharides; it is regarded as a mutualist owing to its involvement in the development of the immune system. The composition of microbiota, including the abundance of Bifidobacteria, is highly variable between individuals and some microbial profiles are associated with diseases. However, whether and how birth and feeding practices contribute to such variation remains unclear. To understand how early events affect the establishment of microbiota, we develop a mathematical model of two types of Bifidobacteria and a generic compartment of commensal competitors. We show how early events affect competition between mutualists and commensals and microbe-host-immune interactions to cause long-term alterations in gut microbial profiles. Bifidobacteria associated with breast milk can trigger immune responses with lasting effects on the microbial community structure. Our model shows that, in response to a change in birth environment, competition alone can produce two distinct microbial profiles post-weaning. Adding immune regulation to our competition model allows for variations in microbial profiles in response to different feeding practices. This analysis highlights the importance of microbe–microbe and microbe–host interactions in shaping the gut populations following different birth and feeding modes.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
EM Pferschy-Wenzig ◽  
K Koskinen ◽  
C Moissl-Eichinger ◽  
R Bauer

Sign in / Sign up

Export Citation Format

Share Document