scholarly journals Long-term Stability of the Human Gut Microbiota in Two Different Rat Strains

PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0153134 ◽  
Author(s):  
Pilou L. H. R. Janssens ◽  
John Penders ◽  
Rick Hursel ◽  
Andries E. Budding ◽  
Paul H. M. Savelkoul ◽  
...  

Gut ◽  
2022 ◽  
pp. gutjnl-2021-326298
Author(s):  
Menglei Shuai ◽  
Yuanqing Fu ◽  
Hai-li Zhong ◽  
Wanglong Gou ◽  
Zengliang Jiang ◽  
...  

ObjectiveThe human gut fungal community, known as the mycobiome, plays a fundamental role in the gut ecosystem and health. Here we aimed to investigate the determinants and long-term stability of gut mycobiome among middle-aged and elderly adults. We further explored the interplay between gut fungi and bacteria on metabolic health.DesignThe present study included 1244 participants from the Guangzhou Nutrition and Health Study. We characterised the long-term stability and determinants of the human gut mycobiome, especially long-term habitual dietary consumption. The comprehensive multiomics analyses were performed to investigate the ecological links between gut bacteria, fungi and faecal metabolome. Finally, we examined whether the interaction between gut bacteria and fungi could modulate the metabolic risk.ResultsThe gut fungal composition was temporally stable and mainly determined by age, long-term habitual diet and host physiological states. Specifically, compared with middle-aged individuals, Blastobotrys and Agaricomycetes spp were depleted, while Malassezia was enriched in the elderly. Dairy consumption was positively associated with Saccharomyces but inversely associated with Candida. Notably, Saccharomycetales spp interacted with gut bacterial diversity to influence insulin resistance. Bidirectional mediation analyses indicated that bacterial function or faecal histidine might causally mediate an impact of Pichia on blood cholesterol.ConclusionWe depict the sociodemographic and dietary determinants of human gut mycobiome in middle-aged and elderly individuals, and further reveal that the gut mycobiome may be closely associated with the host metabolic health through regulating gut bacterial functions and metabolites.


Gut Microbes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 1791677
Author(s):  
M. Mulder ◽  
D. Radjabzadeh ◽  
J. C. Kiefte-de Jong ◽  
A. G. Uitterlinden ◽  
R. Kraaij ◽  
...  

2021 ◽  
Vol 10 (3) ◽  
pp. 459
Author(s):  
Anujit Sarkar ◽  
Ji Youn Yoo ◽  
Samia Valeria Ozorio Dutra ◽  
Katherine H. Morgan ◽  
Maureen Groer

Early life gut microbiota have been increasingly recognized as major contributors to short and/or long-term human health and diseases. Numerous studies have demonstrated that human gut microbial colonization begins at birth, but continues to develop a succession of taxonomic abundances for two to three years until the gut microbiota reaches adult-like diversity and proportions. Several factors, including gestational age (GA), delivery mode, birth weight, feeding types, antibiotic exposure, maternal microbiome, and diet, influence the diversity, abundance, and function of early life gut microbiota. Gut microbial life is essential for assisting with the digestion of food substances to release nutrients, exerting control over pathogens, stimulating or modulating the immune system, and influencing many systems such as the liver, brain, and endocrine system. Microbial metabolites play multiple roles in these interactions. Furthermore, studies provide evidence supporting that imbalances of the gut microbiota in early life, referred to as dysbiosis, are associated with specific childhood or adult disease outcomes, such as asthma, atopic dermatitis, diabetes, allergic diseases, obesity, cardiovascular diseases (CVD), and neurological disorders. These findings support that the human gut microbiota may play a fundamental role in the risk of acquiring diseases that may be programmed during early life. In fact, it is critical to explore the role of the human gut microbiota in early life.


Author(s):  
Anujit Sarkar ◽  
Ji Youn Yoo ◽  
Samia Valeria Ozorio Dutra ◽  
Katherine Hope Morgan ◽  
Maureen Groer

Abstract: Early life gut microbiota have been increasingly recognized as major contributors to short and/or long-term human health and diseases. Numerous studies have demonstrated that human gut microbial colonization begins at birth but continues to develop a succession of taxonomic abundances for two to three years until the gut microbiota reaches adult-like diversity and proportions. Several factors, including gestational age (GA), delivery mode, birth weight, feeding types, antibiotic exposure, maternal microbiome and diet influence the diversity, abundance and function of the early life gut microbiota. Gut microbial life is essential for assisting with the digestion of food substances to release nutrients, exerting control over pathogens, stimulating or modulating the immune system and influencing many systems such as the liver, brain, and endocrine system. Microbial metabolites play multiple roles in these interactions. Furthermore, studies provide evidence supporting that imbalances of the gut microbiota in early life, referred to as dysbiosis, are associated with specific childhood or adult disease outcomes, such as asthma, atopic dermatitis, diabetes, allergic diseases, obesity, cardiovascular diseases (CVD) and neurological disorders. These findings support that the human gut microbiota may play a fundamental role in the risk of acquiring diseases that may be programmed during the early life stage. In fact, it is critical to explore the role of the human gut microbiota in early life. In this review, we summarize the general understanding of the colonization and development of the gut microbiota in early life, highlighting the recent findings regarding the relationship between the gut microbiota composition and their metabolites, and immune functions, which could significantly influence long-term health and disease. We then review known pathophysiological interactions of the early gut microbiome with a number of well characterized diseases and pose potential etiological mechanisms.


2021 ◽  
Vol 288 (1942) ◽  
pp. 20201810
Author(s):  
Xiyan Xiong ◽  
Sara L. Loo ◽  
Li Zhang ◽  
Mark M. Tanaka

The human gut microbiota is transmitted from mother to infant through vaginal birth and breastfeeding. Bifidobacterium , a genus that dominates the infants’ gut, is adapted to breast milk in its ability to metabolize human milk oligosaccharides; it is regarded as a mutualist owing to its involvement in the development of the immune system. The composition of microbiota, including the abundance of Bifidobacteria, is highly variable between individuals and some microbial profiles are associated with diseases. However, whether and how birth and feeding practices contribute to such variation remains unclear. To understand how early events affect the establishment of microbiota, we develop a mathematical model of two types of Bifidobacteria and a generic compartment of commensal competitors. We show how early events affect competition between mutualists and commensals and microbe-host-immune interactions to cause long-term alterations in gut microbial profiles. Bifidobacteria associated with breast milk can trigger immune responses with lasting effects on the microbial community structure. Our model shows that, in response to a change in birth environment, competition alone can produce two distinct microbial profiles post-weaning. Adding immune regulation to our competition model allows for variations in microbial profiles in response to different feeding practices. This analysis highlights the importance of microbe–microbe and microbe–host interactions in shaping the gut populations following different birth and feeding modes.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
EM Pferschy-Wenzig ◽  
K Koskinen ◽  
C Moissl-Eichinger ◽  
R Bauer

2017 ◽  
Author(s):  
EM Pferschy-Wenzig ◽  
A Roßmann ◽  
K Koskinen ◽  
H Abdel-Aziz ◽  
C Moissl-Eichinger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document